Spektraltheorie und Operatoralgebren 5. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Burkhard Kümmerer
Walter Reußwig

SS 2013 17. Mai 2013

Übungen

Aufgabe G23 (Projektionen, Orthogonalität und partielle Isometrien)

Sei \mathscr{A} eine C*-Algebra. Zwei Projektionen $p,q\in\mathscr{A}$ heißen *orthogonal*, wenn $p\cdot q=0$ gilt. Wir schreiben in diesem Fall $p\perp q$.

(a) Zeigen Sie, dass zwei Projektionen $p,q\in \mathscr{A}$ genau dann orthogonal sind, wenn p+q ebenfalls eine Projektion ist.

Seien nun $s_1,s_2\in \mathscr{A}$ partielle Isometrien mit Initialprojektionen $p_1,p_2\in \mathscr{A}$ und Finalprojektionen $q_1,q_2\in \mathscr{A}$.

- (b) Es gilt $p_1 \perp p_2$ genau dann, wenn $s_1 s_2^* = 0$ und $s_2 s_1^* = 0$ gilt.
- (b') Es gilt $q_1 \perp q_2$ genau dann, wenn $s_1^* s_2 = 0$ und $s_2^* s_1 = 0$ gilt.
- (c) Gilt $p_1 \perp p_2$ und $q_1 \perp q_2$, dann ist $s_1 + s_2$ ebenfalls eine partielle Isometrie.
- (d*) Gilt in (c) auch die Umkehrung?

Aufgabe G24 (Kegel und Ordnungen)

Sei V ein reeller Vektorraum. Eine Menge $K \subseteq V$ heißt echter Kegel, wenn folgendes gilt:

- (K1) Mit $v, w \in K$ ist auch $\lambda v + \mu w \in K$ für alle Skalare $\lambda, \mu \ge 0$.
- (K2) Es ist $K \cap (-K) = \{0\}$.
 - (a) Sei K ein echter Kegel. Zeigen Sie, dass die Relation $v \le w :\iff (w v) \in K$ eine Ordnungsrelation definiert.
 - (b) Was muss umgekehrt eine Ordnungsrelation auf einem reellen Vektorraum *V* erfüllen, damit diese durch einen echten Kegel gegeben ist?
 - (c) Sei $V = \mathbb{R}^2$. Wie sehen die echten Kegel auf V aus? Welche bekannten Ordnungen können Sie identifizieren?

Aufgabe G25 (Wahrscheinlichkeitsmaße auf [0,1])

Sei W die Menge aller regulären Wahrscheinlichkeitsmaße auf [0,1], wobei [0,1] mit der Borelschen σ -Algebra versehen sei. Durch $f\mapsto \int_{[0,1]}f\,d\mu$ wird aus $\mu\in W$ ein stetiges lineares Funktional auf $\mathscr{C}([0,1])$.

- (a) Zeigen Sie, dass W bzgl. der σ^* -Topologie auf $\mathscr{C}([0,1])^*$ kompakt und konvex ist.
- (b) Bestimmen Sie die Extremalpunkte von *W*.
- (c) Was besagt der Satz von Krein-Milman in diesem Fall?
- (d) Finden Sie ein σ^* -konvergentes Netz von endlichen Konvexkombinationen von Extremalpunkten mit Lebesguemaß als Grenzwert.
- (e) Ist das Lebesguemaß auf diese Weise auch in der Normtopologie auf W approximierbar?

Aufgabe G26 (*-Homomorphismen auf M_n)

Sei M_n die C*-Algebra der komplexen $n \times n$ Matrizen.

- (a) Zeigen Sie, dass für jede unitäre Matrix $u \in M_n$ die Abbildung $\alpha_u(x) := u^*xu$ auf M_n einen *-Automorphismus definiert.
- (b) Sei $\alpha: M_n \to M_n$ ein *-Automorphismus. Zeigen Sie, dass es eine unitäre Matrix $u \in M_n$ gibt, mit $\alpha = \alpha_u$. (Hinweis: Matrixeinheiten)
- (c) Finden Sie für ein $n \in \mathbb{N}$ ein Beispiel einer C*-Unteralgebra \mathscr{A} von M_n und einem auf dieser Unteralgebra wirkenden *-Automorphismus $\alpha: \mathscr{A} \to \mathscr{A}$, der nicht durch ein unitäres Element $u \in \mathscr{A}$ induziert ist.

Aufgabe G27 (Kompaktifizierungen)

Sei $\mathscr{A}=\mathscr{C}_b(\mathbb{R})$ die C*-Algebra der beschränkten Funktionen auf \mathbb{R} mit Supremumsnorm. Sei \mathscr{A}_c die C*-Unteralgebra von \mathscr{A} , welche aus allen Funktionen $f\in\mathscr{A}$ besteht, für welche $\lim_{|x|\to\infty}f(x)$ existiert.

- (a) Finden Sie einige Beispiele von C*-Unteralgebren \mathscr{B} mit $\mathscr{A}_c \subseteq \mathscr{B} \subseteq \mathscr{A}$.
- (b) Jede solche C*-Algebra ist isomorph zu $\mathscr{C}(\Omega)$, wobei Ω ein kompakter Raum ist. Zeigen Sie, dass Ω eine Kompaktifizierung von \mathbb{R} ist, also dass es eine stetige Injektion $f: \mathbb{R} \to \Omega$ gibt, die \mathbb{R} homöomorph auf $f(\mathbb{R})$ abbildet, so dass $f(\mathbb{R})$ dicht in Ω ist.
- (c) Zeigen Sie umgekehrt, dass jede Kompaktifizierung von \mathbb{R} von dieser Art ist. Damit gibt es eine kanonische 1:1-Beziehung zwischen Kompaktifizierungen von \mathbb{R} und C*-Algebren $\mathcal{A}_c \subseteq \mathcal{B} \subseteq \mathcal{A}$.
- (d) Sei $\beta \mathbb{R}$ die Kompaktifizierung, die zu $\mathscr{C}_b(\mathbb{R})$ gehört. Es bezeichne $\beta : \mathbb{R} \to \beta \mathbb{R}$ die zugehörige Einbettung. Zeigen Sie: Ist K eine beliebige Kompaktifizierung von \mathbb{R} mit Einbettung $f : \mathbb{R} \to K$, dann existiert genau eine stetige Surjektion $\gamma : \beta \mathbb{R} \to K$ mit $\gamma \circ \beta = f$.

In diesem Sinn ist $\beta\mathbb{R}$ die größte Kompaktifizierung von \mathbb{R} und heißt *Stone-Čech-Kompaktifizierung*.