Gaifman's theorem

 $\varphi(\mathbf{x}) \in FO(\sigma)$ is an ℓ -local formula if $\varphi(\mathbf{x}) \equiv \varphi^{\ell}(\mathbf{x}) := [\varphi(\mathbf{x})]^{N^{\ell}(\mathbf{x})}$ (relativisation to $N^{\ell}(\mathbf{x})$), i.e., for all \mathfrak{A}, \mathbf{a} : $\mathfrak{A}, \mathbf{a} \models \varphi$ iff $\mathfrak{A} \upharpoonright N^{\ell}(\mathbf{a}), \mathbf{a} \models \varphi$

a basic $\ell\text{-local sentence}$ is an FO-sentence of the form

$$\varphi = \exists x_1 \dots \exists x_m (\bigwedge_{i < j} d(x_i, x_j) > 2\ell \land \bigwedge_i \psi^{\ell}(x_i))$$

for some ℓ -local formula $\psi^{\ell}(x) \in FO_1(\sigma)$

NB: the following is a theorem of classical model theory

Gaifman's theorem

Summer 13

for any relational signature σ , every $\varphi(\mathbf{x}) \in FO(\sigma)$ is logically equivalent to a boolean combination of local formulae and basic local sentences

M Otto

for a b&f proof of Gaifman's theorem:

the rank of the basic local sentence $\varphi = \exists x_1 \dots \exists x_m (\bigwedge_{i < j} d(x_i, x_j) > 2\ell \land \bigwedge_i \psi^{\ell}(x_i)) \text{ is } (\ell, \operatorname{qr}(\psi), m)$

definition

 $\mathfrak{A}, \mathbf{a} \text{ and } \mathfrak{B}, \mathbf{b} \text{ are } (\ell, q, m)$ -Gaifman-equivalent, $\mathfrak{A}, \mathbf{a} \equiv_{q,m}^{\ell} \mathfrak{B}, \mathbf{b}$, if

- 𝔅, a and 𝔅, b satisfy the same ℓ-local formulae of quantifier rank up to q;
- \mathfrak{A} and \mathfrak{B} satisfy the same basic local sentences in ranks (ℓ', q', m') for $\ell \leq \ell, q' \leq q, m' \leq m$

lemma

if \mathfrak{A} and \mathfrak{B} are (L, Q, m + n)-Gaifman-equivalent for sufficiently large $L, Q, \mathbf{a}_0 \in A^n, \mathbf{b}_0 \in B^n$, then $(I_k)_{k \leq m} : \mathfrak{A}, \mathbf{a}_0 \simeq_m \mathfrak{B}, \mathbf{b}_0$ where, for suitable (ℓ_k, q_k) , I_k consists of all partial isomorphisms

where, for suitable (ℓ_k, q_k) , I_k consists of all partial isomorphisms $p = \mathbf{a} \mapsto \mathbf{b}, |p| \leq m + n - k$, s.t. $\mathfrak{A} \upharpoonright N^{\ell_k}(\mathbf{a}), \mathbf{a} \equiv_{q_k} \mathfrak{B} \upharpoonright N^{\ell_k}(\mathbf{b}), \mathbf{b}$

53/58

FMT expressive completeness results: examples

- modal logic ML(⊆ FO) is expressively complete for first-order properties (of elts) invariant under bisimulation equivalence: FO/~ ≡ ML classically & FMT & a new proof
- ∃-FO ⊆ FO is expressively complete for first-order properties of finite unions of finite successor chains that are preserved under extensions: a restricted FMT version of Łos–Tarski
- ∃-FO_{pos} ⊆ FO is expressively complete for first-order properties that are preserved under homomorphisms within wide classes of finite structures closed under disjoint union & substructures: a restricted FMT version of Lyndon–Tarski–Rossman

FO expressive completeness: classical vs. FMT

- (i) $\varphi \in FO$ preserved under $\mathfrak{A} \rightsquigarrow \mathfrak{B}$: for all relevant $\mathfrak{A} \rightsquigarrow \mathfrak{B}, \mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$
- (ii) $\varphi \equiv \varphi' \in \mathcal{L} \subseteq FO$ over all relevant structures
- (ii)' $\varphi \in FO$ preserved under \mathcal{L} -transfer $\Rightarrow_{\mathcal{L}}$ over all relevant structures
- (ii)" $\varphi \in FO$ preserved under some approximation $\Rightarrow_{\mathcal{L}}^{\ell}$ based on finite index equivalence $\equiv_{\mathcal{L}}^{\ell}$ for $\ell = \ell(\varphi)$ over all relevant structures

preservation: (ii) \Rightarrow (i) / expressive completeness: (i) \Rightarrow (ii) only for preservation, the classical version implies FMT version

classically can use (ii)' \Rightarrow (ii) by compactness (!)

non-classical arguments rather rely on (ii)" \Rightarrow (ii)