Fraïssé limits

theorem (Fraïssé)

if K is an \simeq -closed class of finite σ -structures in finite relational σ with (HP), (JEP), (AP), and with arbitrarily large finite members, then there is a countable σ -structure \mathfrak{A} s.t.

- K is the class of finite substructures of \mathfrak{A} $(K = \operatorname{age}(\mathfrak{A}))$
- K is strongly ω-homogeneous:
 every finite partial isomorphism extends to an automorphism

this *Fraïssé limit of K* is unique up to \simeq ; its FO-theory Th(\mathfrak{A})

- is ω -categorical
- and has quantifier-elimination

Summer 13

so that \mathfrak{A} is also the unique countable atomic as well as the unique countable ω -saturated model of $Th(\mathfrak{A})$

M Otto

39/42

random structures, Fagin's theorem, 0–1 laws

idea: consider the asymptotic behaviour for $n \to \infty$

of probabilities $\mu_n(\varphi) := \frac{|\operatorname{Mod}_n(\varphi)|}{|\operatorname{Mod}_n(\top)|}$

that a uniformly random σ -structure of size non $\{1, \ldots, n\}$ satisfies φ , e.g. for $\varphi \in FO_0(\sigma)$

- L has a limit law if $\mu(\varphi) := \lim_{n \to \infty} \mu_n(\varphi)$ exists for all $\varphi \in L$
- L has a 0–1 law if moreover $\mu(\varphi) \in \{0,1\}$

theorem (Fagin)

for all finite relational signatures σ , $FO_0(\sigma)$ has the 0–1 law; and the *almost sure theory* $\{\varphi \in FO_0(\sigma) \colon \mu(\varphi) = 1\}$ is satisfiable and ω -categorical (hence complete), and coincides with the theory of the Fraïssé limit of the class of all finite σ -structures

example: the random graph/Rado graph

for $\sigma = \{E\}$, consider not the class of all (finite) σ -structures, but the class of all (finite) simple graphs, i.e., models of

 $\varphi_0 := \forall x \forall y (\neg Exx \land Exy \leftrightarrow Eyx)$

- FMod_n(φ₀) has as its Fraïssé limit the random graph or Rado graph ℜ
- its theory is axiomatised by the set of the φ₀-compatible extension axioms Ext[φ₀]
- $\varphi \in \operatorname{Ext}[\varphi_0]$ is almost surely true in finite φ_0 -models:

$$\mu(\varphi) := rac{|\mathrm{Mod}_n(\varphi_0 \wedge \varphi)|}{|\mathrm{Mod}_n(\varphi_0)|} = 1$$

 \Rightarrow Th(\mathfrak{R}) = Ext[φ_0]^{\models} is the almost sure theory of graphs

some further results on asymptotic probabilities

- full analogues of Fagin's result for graphs can be obtained for any *parametric* class of finite σ-structures, e.g., the class of finite tournaments (→ exercises)
- FO has a 0–1 law over every class K of arbitrarily large finite graphs with (HP), (JEP) and (AP), but the almost sure theory need not coincide with the theory of the Fraïssé limit, nor need it be ω-categorical
 - \rightarrow results and survey in [Kolaitis–Prömel–Rothschild 87]
- for a signature σ with at least one non-unary relation symbol, finite σ-structures are almost surely rigid; the same holds true, e.g., of finite graphs, and even w.r.t. the asymptotic measure based on no. of ≃-types rather than no. of realisations on [n]
 → e.g. [Ebbinghaus–Flum: Finite Model Theory]