ω -homogeneous structures

 $\mathfrak{A} \omega$ -homogeneous:

for $\mathfrak{A}, \mathbf{a} \equiv \mathfrak{A}, \mathbf{a}'$ and $a \in A$ there exists $a' \in A$ s.t. $\mathfrak{A}, \mathbf{a}a \equiv \mathfrak{A}, \mathbf{a}'a'$; equivalently: finite partial elementary self-maps form b&f system

- atomic structures are ω-homogeneous,
 ω-saturated structures are ω-homogeneous
- for countable ω -homogeneous $\mathfrak{A}, \mathfrak{B}$: $\mathfrak{A} \equiv \mathfrak{B} \not\Rightarrow \mathfrak{A} \simeq \mathfrak{B}$ unless \mathfrak{A} and \mathfrak{B} even realise the same *n*-types, f.a. $n \in \mathbb{N}$

thm

every countable theory T has countable ω -homogeneous models

thm

for countable structure \mathfrak{A} in countable signature: \mathfrak{A} is ω -saturated if, and only if, \mathfrak{A} is both universal and ω -homogeneous

```
Model Theory
```

Summer 13

37/40

Fraïssé limits

from specification of suitable class K of finite (sub-)structures \rightsquigarrow generic countable limit structure & ω -categorical FO-theory

intuition: saturation/homogeneity w.r.t. isomorphic embeddings of members of K as substructures

examples: $(\mathbb{Q}, <)$ and the random graph (Rado graph)

some relevant *universal algebraic properties* of \simeq -closed class K of (finite) σ -structures:

- hereditary property (HP): closure under substructures
- joint embedding property (JEP): any two members of K embed isomorphically into a common third member of K
- amalgamation property **(AP)**: find diamond completions for isomorphic embeddings within *K*

Fraïssé limits

theorem (Fraïssé)

if K is an \simeq -closed class of finite σ -structures in finite relational σ with (HP), (JEP), (AP), and with arbitrarily large finite members, then there is a countable σ -structure \mathfrak{A} s.t.

- K is the class of finite substructures of \mathfrak{A} $(K = \operatorname{age}(\mathfrak{A}))$
- K is strongly ω-homogeneous:
 every finite partial isomorphism extends to an automorphism

this *Fraïssé limit of K* is unique up to \simeq ; its FO-theory Th(\mathfrak{A})

- is ω -categorical
- and has quantifier-elimination

Summer 13

so that \mathfrak{A} is also the unique countable atomic as well as the unique countable ω -saturated model of $Th(\mathfrak{A})$

M Otto

39/40

random structures, Fagin's theorem, 0–1 laws

idea: consider the asymptotic behaviour for $n \to \infty$

of probabilities $\mu_n(\varphi) := \frac{|\operatorname{Mod}_n(\varphi)|}{|\operatorname{Mod}_n|}$

that a uniformly random σ -structure of size non $\{1, \ldots, n\}$ satisfies φ , e.g. for $\varphi \in FO_0(\sigma)$

- L has a limit law, if $\mu(\varphi) := \lim_{n \to \infty} \mu_n(\varphi)$ exists for all $\varphi \in L$
- L has a 0–1 law, if moreover $\mu(\varphi) \in \{0, 1\}$

theorem (Fagin)

for all finite relational signatures σ , $FO_0(\sigma)$ has the 0–1 law; and the *almost sure theory* $\{\varphi \in FO_0(\sigma) \colon \mu(\varphi) = 1\}$ is satisfiable and ω -categorical (hence complete), and coincides with the theory of the Fraïssé limit of the class of all finite σ -structures