realising and omitting types

question: which types must be realised?

a model of *T* omits $p \in S_n(T)$ if *p* is not realised in \mathfrak{A} it omits a partial type Φ if it omits every *p* in Φ

omitting types theorem

for satisfiable theory $T \subseteq FO_0(\sigma)$ in a countable signature σ , and a partial type $\Phi(\mathbf{x}) \subseteq FO_n(\sigma)$ of T:

if Φ is not isolated in $S_n(T)$ by any formula $\varphi(\mathbf{x}) \in FO_n(\sigma)$, then T has a countable model that omits Φ

NB: a complete theory T must realise every isolated (partial) type

non-isolation of Φ means that every basic open set in $S_n(T)$ is compatible with some violation of Φ

Model Theory Summer 13 M Otto 31/36

saturation properties

 \mathfrak{A} κ -saturated: every type with fewer than κ many parameters from A is realised in \mathfrak{A}

 \mathfrak{A} saturated: every type with fewer than |A| many parameters from A is realised in \mathfrak{A}

- every structure possesses κ -saturated elementary extensions
- for saturated structures in cardinality κ: elementary equivalence implies isomorphism
- FO-theories may not have any saturated models (there may be too many types with parameters)

theorem (countable ω -saturated models)

a complete countable theory T has a countable saturated model if, and only if, all $S_n(T)$ are countable

I.5 Countable models

investigate countable FO-theories T w.r.t. the richness of the class of their countable models:

\longrightarrow criteria w.r.t. to the type spaces $S_n(T)$

- many or (very) few countable models: ω -categoricity
- countable models with special properties:
 - atomic & prime models (just isolated types)
 - $-\omega$ -saturated & universal (all types)
 - $-\omega$ -homogeneous models (highly symmetric)

investigate a universal-algebraic approach to generic countable structures \longrightarrow Fraïssé limits

Model Theory	Summer 13	M Otto	33/36

ω -categoricity

T is ω -categorical if it has precisely one countably infinite model, up to \simeq

theorem (Engeler, Ryll-Nardzewski, Svenonius)

t.f.a.e. for any satisfiable theory $T \subseteq FO_0(\sigma)$ in a countable signature σ :

- (i) T is ω -categorical
- (ii) $S_n(T)$ finite for all n
- NB: $S_n(T)$ finite if, and only if, $FO_n \equiv_T$ finite, if, and only if, all *n*-types of T are isolated
 - $\rightarrow\,$ totally disconnected & compact spaces

the one extreme: countable atomic models

 ${\mathfrak A}$ atomic: only isolated types of ${\rm Th}({\mathfrak A})$ are realised

- countable atomic structures are minimal in the sense of being prime models of their theories, admitting elementary embeddings into every other model: this property characterises atomic models
- countable atomic models are unique up to \simeq within their elementary equivalence class

thm

a complete countable theory T has countable atomic models if, and only if, the isolated types are dense in all $S_n(T)$

Model Theory	Summer 13	M Otto	35/36

the other extreme: countable saturated models

- countable saturated structures are maximal in the sense of being universal among the countable models of their theory w.r.t. elementary embeddings
- moreover, countable saturated structures are rich in the sense of homogeneity: every finite elementary partial self-map extends to an automorphism

together these properties provide a characterisation

• countable saturated structures are unique up to \simeq within their elementary equivalence class

thm

a complete countable theory T has a countable saturated model if, and only if, all $S_n(T)$ are countable