I.3: Back&Forth (aside/review)

proviso: treat relational signatures only! $Part(\mathfrak{A}, \mathfrak{B})$: the set of all partial isomorphisms $p: \mathfrak{A} \upharpoonright dom(p) \simeq \mathfrak{B} \upharpoonright image(p)$ (allowing $p = \emptyset$) notation: $p: \mathbf{a} \mapsto \mathbf{b}$ for finite p and tuple \mathbf{a} enumerating dom(p)NB: $(p: \mathbf{a} \mapsto \mathbf{b}) \in Part(\mathfrak{A}, \mathfrak{B})$ iff $\mathfrak{A}, \mathbf{a} \equiv_0 \mathfrak{B}, \mathbf{b}$ qfr-free FO-equivalence

back&forth extensions:

 $p \in \operatorname{Part}(\mathfrak{A}, \mathfrak{B})$ has b&f extensions in $I \subseteq \operatorname{Part}(\mathfrak{A}, \mathfrak{B})$ if

forth: for all $a \in A$ there is some $p' \in I$, such that $p \subseteq p'$ and $a \in dom(p')$;

back: for all $b \in B$ there is some $p' \in I$, such that $p \subseteq p'$ and $b \in image(p')$;

Model Theory

M Otto

25/36

back&forth systems

Summer 13

- *I* ⊆ Part(𝔅,𝔅) is a b&f system if every *p* ∈ *I* has b&f extensions in *I*
- $(I_k)_{k \leq m}$ or $(I_k)_{k \in \mathbb{N}}$, where $I_k \subseteq Part(\mathfrak{A}, \mathfrak{B})$, are b&f systems if every $p \in I_{k+1}$ has b&f extensions in I_k

game intuition: b&f systems encode (non-deterministic) winning strategies for second player in pebble games

- a flat b&f system *I* provides responses in infinite game in every position *p* ∈ *I*
- a stratified b&f system (I_k) provides responses that are safe for k further rounds from positions in $p \in I_k$

 \longrightarrow Ehrenfeucht–Fraïssé

levels of back&forth equivalence

m-isomorphy, $\mathfrak{A}, \mathbf{a} \simeq_m \mathfrak{B}, \mathbf{b}$: $(p: \mathbf{a} \mapsto \mathbf{b}) \in I_m$ for some b&f system $(I_k)_{k \leq m}$ second player has winning strategy in *m*-round game from $\mathfrak{A}, \mathbf{a}; \mathfrak{B}, \mathbf{b}$

finite isomorphy, $\mathfrak{A}, \mathbf{a} \simeq_{ ext{fin}} \mathfrak{B}, \mathbf{b}$:

 $(p: \mathbf{a} \mapsto \mathbf{b}) \in I_k$ for all k in some b&f system $(I_k)_{k \in \mathbb{N}}$ winning strategy for second player in every finite game \simeq_{fin} is the common refinement of all the \simeq_m

partial isomorphy, $\mathfrak{A}, \mathbf{a} \simeq_{part} \mathfrak{B}, \mathbf{b}$: $(p: \mathbf{a} \mapsto \mathbf{b}) \in I$ for some b&f system Iwinning strategy for second player in infinite game

natural levels of equivalence supporting intuitive game arguments; model-theoretic interest: relationships with levels of logical equivalence

M Otto

Model Theory

review: Ehrenfeucht-Fraïssé theorem

recall levels of FO-equivalence: $\mathfrak{A}, \mathbf{a} \equiv_m \mathfrak{B}, \mathbf{b}$ equivalence w.r.t. FO-formulae up to qfr-rk m $\mathfrak{A}, \mathbf{a} \equiv \mathfrak{B}, \mathbf{b}$ iff $\mathfrak{A}, \mathbf{a} \equiv_m \mathfrak{B}, \mathbf{b}$ for all $m \in \mathbb{N}$

Ehrenfeucht-Fraïssé Theorem

Summer 13

for *finite* relational σ and σ -structures $\mathfrak{A}, \mathfrak{B}$ with parameters $\mathbf{a} \in A^n, \mathbf{b} \in B^n$:

- $\mathfrak{A}, \mathbf{a} \simeq_m \mathfrak{B}, \mathbf{b}$ iff $\mathfrak{A}, \mathbf{a} \equiv_m \mathfrak{B}, \mathbf{b}$
- $\mathfrak{A}, \mathbf{a} \simeq_{\text{fin}} \mathfrak{B}, \mathbf{b}$ iff $\mathfrak{A}, \mathbf{a} \equiv \mathfrak{B}, \mathbf{b}$

NB: finiteness and relational nature of σ matters; it implies that \simeq_m and \equiv_m have finite index over the class of all σ -structures with n parameters

27/36

I.4 Types: logic and topology

n-type: (complete) specification of properties of an *n*-tuple by a set of formulae in free variables $\mathbf{x} = (x_1, \dots, x_n)$, or: a maximally consistent subset $p = p(\mathbf{x}) \subseteq FO_n(\sigma)$

 $\operatorname{tp}^{\mathfrak{A}}(\mathbf{a}) := \{ \varphi(\mathbf{x}) \in \operatorname{FO}_n(\sigma) \colon \mathfrak{A}, \mathbf{a} \models \varphi \},$

the (complete) type of $\mathbf{a} \in A^n$ in σ -structure \mathfrak{A} , is the unique type *p* realised by the tuple \mathbf{a} in \mathfrak{A}

variations:

- type $\operatorname{tp}^{\mathfrak{A}}_{\mathcal{C}}(\mathbf{a})$ with parameters $\mathcal{C} \subseteq \mathcal{A}$ in $\mathfrak{A}_{\mathcal{C}}$
- type of a theory T: realised/realisable in models $\mathfrak{A} \models T$
- partial *n*-type: any satisfiable Φ(**x**) ⊆ FO_n(σ);
 can be identified with the set of (complete) types p ⊇ Φ

M Otto

Wodel I heory	Model	Theory
---------------	-------	--------

type spaces of a theory

Summer 13

for a satisfiable theory $T \subseteq FO_0(\sigma)$,

 $S_n(T)$ is the set of all *n*-types of *n*-tuples in models $\mathfrak{A} \models T$,

or: the set of all maximally consistent sets $T \subseteq \Phi(\mathbf{x}) \subseteq FO_n(\sigma)$

NB: partial types are treated as special subsets of $S_n(T)$

$S_n(T)$ as a topological space

with topology induced by the basis of open sets $O_{\varphi} := \{ p \in S_n(T) \colon \varphi \in p \}$

the Stone space of the theory T or of the boolean algebra of $FO_n(\sigma)/\equiv_T$ (logical equivalence in T)

- Hausdorff and totally disconnected (the O_{φ} are clopen)
- compact!

29/36