application: Löwenheim–Skolem–Tarski

lemma (*≼*-criterion)

 $A \subseteq B$ in σ -structure \mathfrak{B} is the universe of an elementary substructure $\mathfrak{A} \preccurlyeq \mathfrak{B}$ (i.e., $\mathfrak{B} \upharpoonright A \preccurlyeq \mathfrak{B}$) if, and only if

for every $\varphi(\mathbf{x}, x) \in FO(\sigma)$ and **a** over *A*: ex. $b \in B$ s.t. $\mathfrak{B}, \mathbf{a}, b \models \varphi \Rightarrow$ ex. $a \in A$ s.t. $\mathfrak{B}, \mathbf{a}, a \models \varphi$

theorem (Löwenheim–Skolem–Tarski)

for any σ -structure \mathfrak{B} and $A_0 \subseteq B$, there is some A, $A_0 \subseteq A \subseteq B$, such that:

- $\mathfrak{A} := \mathfrak{B} \upharpoonright A \preccurlyeq \mathfrak{B}$
- $|A| \leq \max(\omega, |A_0|, |FO(\sigma)|)$

Summer 13

NB: obtain new proof of Löwenheim–Skolem \downarrow as a corollary

Model Theory

M Otto

elementary chains: Tarski union property

limits of chains

a family of σ -structures $(\mathfrak{A}_{lpha})_{lpha\in\lambda}$ indexed by an ordinal λ is

- a chain if $\mathfrak{A}_{\alpha} \subseteq \mathfrak{A}_{\beta}$ for all $\alpha \in \beta \in \lambda$
- an elementary chain if $\mathfrak{A}_{\alpha} \preccurlyeq \mathfrak{A}_{\beta}$ for all $\alpha \in \beta \in \lambda$

the limit of the chain $(\mathfrak{A}_{\alpha})_{\alpha \in \lambda}$ is the unique σ -structure $\mathfrak{A} := \bigcup_{\alpha} \mathfrak{A}_{\alpha}$ on $\bigcup_{\alpha} A_{\alpha}$ for which $\mathfrak{A}_{\alpha} \subseteq \mathfrak{A}$ for all $\alpha \in \lambda$

elementary chain lemma (Tarski union property, TUP)

for any elementary chain $(\mathfrak{A}_{\alpha})_{\alpha \in \lambda}$ with limit $\mathfrak{A} := \bigcup_{\alpha} \mathfrak{A}_{\alpha}$:

 $\mathfrak{A}_{\alpha} \preccurlyeq \mathfrak{A} \quad \text{for all } \alpha \in \lambda;$

hence, any elementary class is closed under limits of elementary chains 19/24

applications of elementary chain constructions

preservation under chain limits:

while every $\varphi \in FO$ is preserved under limits of elementary chains, $\varphi \in \forall^* \exists^*$ -FO (the prenex $\forall^* \exists^*$ fragment of FO) is preserved under arbitrary unions of chains, and in fact, t.f.a.e. for $\varphi \in FO(\sigma)$:

(i) φ is preserved under limits of chains

(ii)
$$\varphi \equiv \varphi' \in \forall^* \exists^* - FO(\sigma)$$

 φ preserved under limits (unions) of chains:

for any chain of σ -structures $(\mathfrak{A}_{\alpha})_{\alpha < \lambda}$, if $\mathfrak{A}_{\alpha} \models \varphi$ for all $\alpha < \lambda$, then $\mathfrak{A} \models \varphi$ for the limit $\mathfrak{A} = \bigcup_{\alpha < \lambda} \mathfrak{A}_{\alpha}$

M Otto

further examples of expressive completeness results

positive FO is preserved in homomorphic images, positive existential FO under arbitrary homomorphisms

Łos–Lyndon–Tarski Theorems

Summer 13

- (A) t.f.a.e. for $\varphi \in FO(\sigma)$:
- (i) φ is preserved under surjective homomorphisms
- (ii) $\varphi \equiv \varphi' \in FO_{pos}(\sigma)$ (the positive fragment of FO)

(B) t.f.a.e. for
$$\varphi \in FO(\sigma)$$
:

- (i) φ is preserved under homomorphisms
- (ii) $\varphi \equiv \varphi' \in \exists$ -FO_{pos}(σ) (existential positive fragment of FO)

21/24

Robinson consistency

yet another powerful application of elementary chains proves the

Robinson consistency theorem

in signatures τ_1, τ_2 and $\tau_0 := \tau_1 \cap \tau_2$:

if $\Phi_i \subseteq FO_0(\tau_i)$ are such that

- Φ_0 is a complete theory (in FO₀(τ_0)), and
- $\Phi_1 \supseteq \Phi_0$ and $\Phi_2 \supseteq \Phi_0$ are both satisfiable,

then also $\Phi_1\cup\Phi_2$ is satisfiable.

Model Theory

MC

corollaries: Craig interpolation and Beth

corollary: Craig interpolation

Summer 13

if $\varphi_1 \models \varphi_2$ for $\varphi_i \in FO(\tau_i)$, then there is some $\chi \in FO(\tau_1 \cap \tau_2)$ such that $\varphi_1 \models \chi$ and $\chi \models \varphi_2$

corollary: Beth definability

implicit FO-definability implies explicit FO-definability

terminology: a relation $R \notin \sigma$ is *implicitly defined* by $\Sigma(R) \subseteq FO_0(\sigma \cup \{R\})$ if, for renaming $R \rightsquigarrow R'$ by fresh R', $\Sigma(R) \cup \Sigma(R') \models \forall \mathbf{x}(R\mathbf{x} \leftrightarrow R'\mathbf{x});$

an explicit definition (relative to Σ) then has the form

 $\Sigma \models \forall \mathbf{x} (R\mathbf{x} \leftrightarrow \xi(\mathbf{x})) \text{ for some } \xi(\mathbf{x}) \in FO(\sigma)$

23/24