Los Theorem

Let $\mathfrak{A} := \prod_{i} \mathfrak{A}_{i} / \mathcal{U}$ be an ultraproduct of a family $(\mathfrak{A}_{i})_{i \in I}$ of σ -structures \mathfrak{A}_{i} w.r.t. an ultrafilter \mathcal{U} on I. Then, for any $\mathfrak{a}(\mathbf{x}) = \mathfrak{a}(\mathbf{x} - \mathbf{x}) \in \mathrm{FO}_{i}(\sigma)$

Then, for any $\varphi(\mathbf{x}) = \varphi(x_1, \dots, x_n) \in FO_n(\sigma)$, and for any $\mathbf{a} = (a_1, \dots, a_n) \in (\prod_i A_i)^n$:

$$\mathfrak{A} \models \varphi \big[([a_1], \dots, [a_n]) \big] \quad \text{iff} \quad \llbracket \varphi(\mathbf{a}) \rrbracket \in \mathcal{U}$$

NB: $\llbracket \varphi(\mathbf{a}) \rrbracket = \{i \in I : \mathfrak{A}_i \models \varphi[\mathbf{a}(i)]\}$ serves as a set-valued semantic valuation over $\prod_i \mathfrak{A}_i$ and

"truth in $\prod_i \mathfrak{A}_i / \mathcal{U}$ is truth in \mathcal{U} -many components"

compactness via ultra-products

> such that, f.a. $i \in I$, the subset $\Phi_i := \{ \varphi \in \Phi : i \in s_{\varphi} \} \subseteq \Phi$ is finite

then, for a family of models $\mathfrak{A}_i \models \Phi_i$, for $i \in I$:

(Los) $\prod_{i} \mathfrak{A}_{i} / \mathcal{U} \models \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \mathcal{U},$

and $\prod_{i} \mathfrak{A}_{i} / \mathcal{U} \models \varphi$ for every $\varphi \in \Phi$, since $\llbracket \varphi \rrbracket \supseteq s_{\varphi} \in \mathcal{U}$

... and suitable I and \mathcal{U} can be found (NB: multiple uses of AC)

compactness via ultra-products: the countable case

for countable $\Phi = \{\varphi_n : n \in \mathbb{N}\} \subseteq FO_0(\sigma)$, can use any non-principal ultrafilter \mathcal{U} on \mathbb{N}

as \mathcal{U} extends the Frechet filter (!), can use $\Phi_i := \{\varphi_n : n \leq i\}$ and $\mathfrak{A}_i \models \Phi_i$ for all $i \in \mathbb{N}$ guarantees that $\prod \mathfrak{A}_i / \mathcal{U} \models \Phi$:

 $\llbracket \varphi_n \rrbracket \supseteq \{i \in \mathbb{N} \colon i \ge n\} \in \mathcal{U}$

corollary: a saturation property

for σ -structures \mathfrak{A} in at most countable σ and $\Phi(x) = \{\varphi_n(x) : n \in \mathbb{N}\} \subseteq FO_1(\sigma)$ such that $\mathfrak{A} \models \exists x \bigwedge_{n \leq i} \varphi$ for all i:

there is some $a \in A^{\mathbb{N}}$ such that $\mathfrak{A}^{\mathbb{N}}/\mathcal{U}, [a] \models \Phi$

Model Theory	Summer 13	M Otto	13/20

compactness via ultraproducts: the general case

for $\Phi \subseteq FO_0(\sigma)$ of cardinality κ , $\Phi = \{\varphi_\alpha : \alpha \in \kappa\}$, use $I := \mathcal{P}_{fin}(\kappa) = \{i \in \mathcal{P}(\kappa) : i \text{ finite }\}$ together with $s : \alpha \longmapsto s_\alpha := \{i \in I : \alpha \in i\}$, and ultrafilter \mathcal{U} on I with $\mathcal{U} \supseteq \mathcal{B}$ where $\mathcal{B} := \{s_\alpha : \alpha \in \kappa\}$ has f.i.p.

- if every finite $\Phi_0 \subseteq \Phi$ is satisfiable, then $\Phi_i := \{\varphi_\alpha : \alpha \in i\}$ is satisfiable for all $i \in I$
- if $\mathfrak{A}_i \models \Phi_i$ for all $i \in I$, then $\prod \mathfrak{A}_i / \mathcal{U} \models \Phi$

I.2 Elementary maps and chains

review: relationships between σ -structures isomorphy & isomorphisms: $\pi : \mathfrak{A} \simeq \mathfrak{B}$ (or $\pi : \mathfrak{A}, \mathbf{a} \simeq \mathfrak{B}, \mathbf{b}$) substructure/extension relationship: $\mathfrak{A} \subseteq \mathfrak{B}$ isomorphic embeddings: $\pi : \mathfrak{A} \simeq \mathfrak{A}' \subseteq \mathfrak{B}$

elementary embeddings $\pi: \mathfrak{A} \longrightarrow_{el} \mathfrak{B}$: $\pi: A \rightarrow B$ such that f.a. $\mathbf{a} \in A^n$: $\mathfrak{A}, \mathbf{a} \equiv \mathfrak{B}, \pi(\mathbf{a})$ cf. weaker notion of isomorphic embeddings

elementary substructure/extension relationship $\mathfrak{A} \preccurlyeq \mathfrak{B}$:

 $A \subseteq B$ (and $\mathfrak{A} \subseteq \mathfrak{B}$) with elementary inclusion map $\iota \colon \mathfrak{A} \to \mathfrak{B}$

related notions for partial maps

partial isomorphisms $\pi \in Part(\mathfrak{A}, \mathfrak{B})$:

 $\pi: \operatorname{dom}(\pi) \subseteq A \longrightarrow \operatorname{image}(\pi) \subseteq B$ such that f.a. $\mathbf{a} \in \operatorname{dom}(\pi)^n$ and all atomic $\alpha \in \operatorname{FO}_n(\sigma)$: $\mathfrak{A}, \mathbf{a} \models \varphi \Leftrightarrow \mathfrak{B}, \pi(\mathbf{a}) \models \varphi$

partial elementary maps:

 $\pi \in \operatorname{Part}(\mathfrak{A}, \mathfrak{B})$ such that f.a. $\mathbf{a} \in \operatorname{dom}(\pi)^n$: $\mathfrak{A}, \mathbf{a} \equiv \mathfrak{B}, \pi(\mathbf{a})$

partial isomorphisms and partial elementary maps arise as approximations, and in back&forth arguments (cf. Ehrenfeucht–Fraïssé techniques)

extensions & elementary extensions

for σ -structure \mathfrak{A} put $\sigma_A := \sigma \cup \{c_a : a \in A\}$, and let \mathfrak{A}_A be the natural σ_A expansion of \mathfrak{A}

algebraic (or quantifier-free) diagram:

 $\mathrm{D}_{\mathrm{alg}}(\mathfrak{A}) := \{ \varphi(\mathbf{c_a}) \colon \mathfrak{A} \models \varphi[\mathbf{a}], \ \varphi \in \mathrm{FO}(\sigma) \text{ qfr-free } \}$

elementary diagram:

 $D(\mathfrak{A}) = D_{el}(\mathfrak{A}) := \{\varphi(\mathbf{c}_{\mathbf{a}}) : \mathfrak{A} \models \varphi[\mathbf{a}], \ \varphi \in FO(\sigma) \} [\equiv Th(\mathfrak{A}_{\mathcal{A}})]$

up to isomorphism,

- the extensions of $\mathfrak A$ are the σ -reducts of models of $\mathrm{D}_{\mathrm{alg}}(\mathfrak A)$
- the elementary extensions of \mathfrak{A} are the σ -reducts of models of $D_{el}(\mathfrak{A})$

Model Theory	Summer 13	M Otto	17/20

application: a first 'preservation theorem'

theorem (Tarski)

t.f.a.e. for $\varphi(\mathbf{x}) \in FO(\sigma)$:

- (i) φ is preserved under substructures
- (ii) $\varphi \equiv \varphi' \in \forall$ -FO(σ) (the universal fragment of FO)
- NB: (ii) \Rightarrow (i) is easy by syntactic induction on $\varphi \in \forall$ -FO(σ) (i) \Rightarrow (ii) is a non-trivial *expressive completeness* result