relational recursion: fixpoint logics

 $\varphi(X, \mathbf{x}) \in FO_k(\sigma \cup \{X\})$ with k-ary X and matching \mathbf{x} induces operation on $\mathcal{P}(A^k)$, uniformly across all $\mathfrak{A} \in Fin(\sigma)$:

$$\begin{array}{rccc} \mathcal{F}^{\mathfrak{A}}_{\varphi} \colon \mathcal{P}(\mathcal{A}^{k}) & \longrightarrow & \mathcal{P}(\mathcal{A}^{k}) \\ P & \longmapsto & \{\mathbf{a} \in \mathcal{A}^{k} \colon \mathfrak{A}, P, \mathbf{a} \models \varphi\} \end{array}$$

easy to see: if $\varphi(X, \mathbf{x})$ is X-positive, this operation is monotone (preservation result/classically only: matching expressive completeness)

natural extensions of FO, esp. for FMT, provide recursion mechanisms based on such definable operations

- **least fixpoint logic LFP** has least and greatest fixpoints for positive/monotone operations
- partial fixpoint logic PFP has fixpoints for arbitrary operations (with default ∅)

Model Theory	Summer 13	M Otto	67/72

capturing results with order

thm (Immerman–Vardi)

Ptime \equiv LFP over linearly ordered structures

i.e., t.f.a.e. for every class $C \subseteq Fin(\sigma)$

of linearly ordered $\sigma\text{-structures:}$

- (i) $C \subseteq Fin(\sigma)$ is decidable in NP
- (ii) C is definable within Fin (σ) by a sentence of LFP (σ)

thm (Abiteboul–Vianu)

Pspace \equiv PFP over linearly ordered structures

remarks: order is crucial, simple fixpoints over FO suffice model-checking in Ptime/Pspace is obvious expressive completeness: coding & fixpoint recursion

proof ideas: coding over linearly ordered structures

Ptime/LFP:

encode run $(C_t)_{t < n^k}$ of DTM on input $\mathfrak{A} = (n, <, ...)$ as a relation $R \subseteq A^{3k+2}$, which is definable as the least fixpoint of monotone/X-positive inductive process that allows to add new X-entries (for C_{t+1}) based on existing X-entries (for C_t)

Pspace/PFP:

produce sequence of n^k -bounded configurations (C_t) of DTM on input $\mathfrak{A} = (n, <, ...)$ as stages of FO-definable operation mapping X (for C_t) to $\mathcal{F}_{\varphi}^{\mathfrak{A}}$ (for C_{t+1})

so that termination within space bound n^k yields encoding of final configuration as PFP fixpoint

in both cases, get 'normal form' with single (unnested) application of fixpoint operators to first-order formulae

Model Theory

fixpoint operations and k-variable logic

lemma

for $\varphi(X, \mathbf{x}) \in FO_k^k(\sigma)$ with X and **x** of arity k: $\mathcal{F}_{\varphi}^{\mathfrak{A}}$ is compatible with \simeq_{∞}^k and preserves closure under \simeq_{∞}^k

M Otto

 \rightsquigarrow resulting least or partial fixpoints are closed under \simeq^k_∞

and fixpoint iteration over \mathfrak{A} is faithfully represented over the linearly ordered *k*-pebble invariant $\mathfrak{I}^{k}(\mathfrak{A}, \mathbf{a})$, where LFP captures Ptime and PFP captures Pspace

lemma

the linearly ordered k-pebble invariant $\mathfrak{I}^k(\mathfrak{A}, \mathbf{a})$ itself is LFP-definable (interpretable) over \mathfrak{A} (without ordering)

easy: complement of \simeq_{∞}^{k} is a least fixed point of stages $\not\sim_{i}$ based on induction step $\mathbf{x} \not\sim_{i+1} \mathbf{x}'$ if $\mathbf{x} \not\sim_{i} \mathbf{x}' \lor \bigvee_{i \in [k]} \exists y \forall y' (\mathbf{x} \frac{y}{i} \not\sim_{i} \mathbf{x}' \frac{y'}{i}) \lor \ldots$

69/72

Abiteboul–Vianu theorem

question:

what does the relationship between LFP and PFP over not necessarily ordered finite structures tell us about Ptime vs. Pspace?

clearly Pspace collapses to Ptime if, and only if, $LFP \equiv PFP$ over the class of all linearly ordered finite σ -structures, even just for $\sigma = \{<, P\}$ with one unary predicate P

surprisingly strong link:

the collapse of Pspace to Ptime implies that $LFP \equiv PFP$ over the class of all finite σ -structures (for any σ)

thm (Abiteboul-Vianu)

Summer 13

Pspace = Ptime if, and only if, $LFP \equiv PFP$ (in FMT throughout)

```
Model Theory
```

M Otto

Abiteboul–Vianu thm: proof idea

suppose (*) Pspace = Ptime, and let $C = FMod(\varphi), \varphi \in PFP(\sigma)$

choose k such that all subformulae of φ are preserved under \simeq^k_∞

then, uniformly across all $\mathfrak{A} \in \mathsf{Fin}(\sigma)$:

- $\varphi^{\mathfrak{A}}$ can be evaluated on $\mathfrak{I}^{k}(\mathfrak{A})$;
- this evaluation on $\mathfrak{I}^k(\mathfrak{A})$ is in Pspace, hence in Ptime by (*);
- as ℑ^k(𝔅) is linearly ordered, the outcome is LFP-definable over ℑ^k(𝔅) by the Immerman–Vardi theorem;
- as $\mathfrak{I}^k(\mathfrak{A})$ is LFP-interpretable over \mathfrak{A} , \mathcal{C} is LFP-definable

in fact: LFP $\equiv \bigcup_{k} \text{Ptime}(\mathfrak{I}^{k})$ PFP $\equiv \bigcup_{k} \text{Pspace}(\mathfrak{I}^{k})$

and the collapse in size from \mathfrak{A} to $\mathfrak{I}^k(\mathfrak{A})$ for unordered \mathfrak{A} accounts for the possible deviation from the ordered case

71/72