
relational recursion: fixpoint logics

ϕ(X , x) ∈ FOk(σ ∪ {X}) with k-ary X and matching x
induces operation on P(Ak), uniformly across all A ∈ Fin(σ):

FA
ϕ : P(Ak) −→ P(Ak)

P 7−→ {a ∈ Ak : A,P , a |= ϕ}

easy to see: if ϕ(X , x) is X -positive, this operation is monotone
(preservation result/classically only: matching expressive completeness)

natural extensions of FO, esp. for FMT, provide recursion
mechanisms based on such definable operations

• least fixpoint logic LFP has least and greatest fixpoints
for positive/monotone operations

• partial fixpoint logic PFP has fixpoints
for arbitrary operations (with default ∅)
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capturing results with order

thm (Immerman–Vardi)

Ptime ≡ LFP over linearly ordered structures

i.e., t.f.a.e. for every class C ⊆ Fin(σ)
of linearly ordered σ-structures:

(i) C ⊆ Fin(σ) is decidable in NP

(ii) C is definable within Fin(σ) by a sentence of LFP(σ)

thm (Abiteboul–Vianu)

Pspace ≡ PFP over linearly ordered structures

remarks: order is crucial, simple fixpoints over FO suffice
model-checking in Ptime/Pspace is obvious
expressive completeness: coding & fixpoint recursion
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proof ideas: coding over linearly ordered structures

Ptime/LFP:
encode run (Ct)t<nk of DTM on input A = (n, <, . . .)
as a relation R ⊆ A3k+2, which is definable as the least fixpoint
of monotone/X -positive inductive process that allows to add
new X -entries (for Ct+1) based on existing X -entries (for Ct)

Pspace/PFP:
produce sequence of nk -bounded configurations (Ct) of DTM
on input A = (n, <, . . .) as stages of FO-definable operation
mapping X (for Ct) to FA

ϕ (for Ct+1)

so that termination within space bound nk yields
encoding of final configuration as PFP fixpoint

in both cases, get ‘normal form’ with single (unnested)
application of fixpoint operators to first-order formulae
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fixpoint operations and k-variable logic

lemma

for ϕ(X , x) ∈ FOk
k(σ) with X and x of arity k :

FA
ϕ is compatible with ≃k

∞
and preserves closure under ≃k

∞

 resulting least or partial fixpoints are closed under ≃k
∞

and fixpoint iteration over A is faithfully represented
over the linearly ordered k-pebble invariant Ik(A, a),
where LFP captures Ptime and PFP captures Pspace

lemma

the linearly ordered k-pebble invariant Ik(A, a) itself is
LFP-definable (interpretable) over A (without ordering)

easy: complement of ≃k
∞

is a least fixed point of stages 6∼i based on

induction step x 6∼i+1 x
′ if x 6∼i x

′ ∨
∨

j∈[k] ∃y∀y
′
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Abiteboul–Vianu theorem

question:
what does the relationship between LFP and PFP over not
necessarily ordered finite structures tell us about Ptime vs. Pspace?

clearly Pspace collapses to Ptime if, and only if, LFP ≡ PFP

over the class of all linearly ordered finite σ-structures,
even just for σ = {<,P} with one unary predicate P

surprisingly strong link:
the collapse of Pspace to Ptime implies that LFP ≡ PFP

over the class of all finite σ-structures (for any σ)

thm (Abiteboul–Vianu)

Pspace = Ptime if, and only if, LFP ≡ PFP (in FMT throughout)
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Abiteboul–Vianu thm: proof idea

suppose (∗) Pspace = Ptime, and let C = FMod(ϕ), ϕ ∈ PFP(σ)

choose k such that all subformulae of ϕ are preserved under ≃k
∞

then, uniformly across all A ∈ Fin(σ):
• ϕA can be evaluated on I

k(A);
• this evaluation on I

k(A) is in Pspace, hence in Ptime by (∗);
• as Ik(A) is linearly ordered, the outcome is LFP-definable

over Ik(A) by the Immerman–Vardi theorem;

• as Ik(A) is LFP-interpretable over A, C is LFP-definable

in fact: LFP ≡
⋃

k Ptime(Ik)

PFP ≡
⋃

k Pspace(I
k)

and the collapse in size from A to I
k(A) for unordered A

accounts for the possible deviation from the ordered case
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