relational recursion: fixpoint logics

o(X,x) € FOx(o U {X}) with k-ary X and matching x
induces operation on P(AX), uniformly across all 2 € Fin(o):
Fa:P(AK) — P(AX)
P — {acA: A Paky}

easy to see: if (X, x) is X-positive, this operation is monotone
(preservation result/classically only: matching expressive completeness)

natural extensions of FO, esp. for FMT, provide recursion
mechanisms based on such definable operations

e least fixpoint logic LFP has least and greatest fixpoints
for positive/monotone operations

e partial fixpoint logic PFP has fixpoints
for arbitrary operations (with default ()
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capturing results with order

thm (Immerman—Vardi)

Ptime = LFP over linearly ordered structures

i.e., t.f.a.e. for every class C C Fin(o)
of linearly ordered o-structures:

(i) C C Fin(o) is decidable in NP
(ii) C is definable within Fin(o) by a sentence of LFP(0)

thm (Abiteboul-Vianu)

Pspace = PFP  over linearly ordered structures

remarks: order is crucial, simple fixpoints over FO suffice
model-checking in Ptime/Pspace is obvious
expressive completeness: coding & fixpoint recursion
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proof ideas: coding over linearly ordered structures

Ptime/LFP:

encode run (Ct);cpx of DTM on input A = (n, <, ...)

as a relation R C A3k*2 which is definable as the least fixpoint
of monotone/X-positive inductive process that allows to add
new X-entries (for Cry1) based on existing X-entries (for C;)

Pspace/PFP:

produce sequence of n*-bounded configurations (C;) of DTM
on input 2 = (n, <,...) as stages of FO-definable operation
mapping X (for C;) to ]-"g (for Cit1)

so that termination within space bound n* yields
encoding of final configuration as PFP fixpoint

in both cases, get ‘normal form' with single (unnested)
application of fixpoint operators to first-order formulae
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fixpoint operations and k-variable logic

lemma

for p(X,x) € FOf(c0) with X and x of arity k:
]:g Is compatible with :{;O and preserves closure under

~k

e,

k

~+ resulting least or partial fixpoints are closed under ~7_

and fixpoint iteration over 2l is faithfully represented
over the linearly ordered k-pebble invariant J%(2(, a),
where LF'P captures Ptime and PFP captures Pspace

lemma

the linearly ordered k-pebble invariant J%(2l, a) itself is
LFP-definable (interpretable) over 2 (without ordering)

easy: complement of ~X is a least fixed point of stages ¢; based on

induction step x ;1 X' if x %4 X'V \/je[k] EIyVy’(xj—f A x’yT/) V...
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Abiteboul-Vianu theorem

question:
what does the relationship between LFP and PFP over not
necessarily ordered finite structures tell us about Ptime vs. Pspace?

clearly Pspace collapses to Ptime if, and only if, LFP = PFP
over the class of all linearly ordered finite o-structures,
even just for 0 = {<, P} with one unary predicate P

surprisingly strong link:
the collapse of Pspace to Ptime implies that LFP = PFP
over the class of all finite o-structures (for any o)

thm (Abiteboul-Vianu)

Pspace = Ptime if, and only if, LFP = PFP (in FMT throughout)
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Abiteboul-Vianu thm: proof idea

suppose (x) Pspace = Ptime, and let C = FMod(y), ¢ € PFP(0)

choose k such that all subformulae of ¢ are preserved under ~

k

(©.@]

then, uniformly across all 2l € Fin(o):

©™ can be evaluated on J%(2);

this evaluation on J%(21) is in Pspace, hence in Ptime by (x);
as J%(21) is linearly ordered, the outcome is LFP-definable
over JX(21) by the Immerman—Vardi theorem;

as J%(2) is LFP-interpretable over A, C is LFP-definable

in fact:  LFP = |J, Ptime(J%)

PFP = |J, Pspace(J%)

and the collapse in size from 2 to JX(2() for unordered 2
accounts for the possible deviation from the ordered case
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