II.3 FO^k: the k-variable fragment of FO

in relational signature σ , formulae of $FO^k(\sigma) \subseteq FO(\sigma)$ use only k distinct variable symbols (x_1, \ldots, x_k) throughout, re-usable in nested quantifications, as in

 $\varphi(x) := \exists y (Exy \land \exists x (Eyx \land \exists y (Exy \land \exists x Eyx))) \in FO^2(E),$ which says that there is an *E*-path of length 4 from *x*

NB: subformulae of an FO^k -formula define and can be evaluated in terms of relations of arity up to k only

Remark: FO^2 has the finite model property, whence $SAT(FO^2) = FINSAT(FO^2)$ is decidable (Mortimer); in fact, FO^2 even satisfies a small model property with an exponential bound on the size of minimal size models and $SAT(FO^2)$ is in NExptime (Grädel–Kolaitis–Vardi)

FO^k and k-pebble games

adaptation of FO-Ehrenfeucht–Fraïssé game and b&f notions: configurations $(\mathfrak{A}, \mathbf{a}; \mathfrak{B}, \mathbf{b})$ with $\mathbf{a} \in A^k, \mathbf{b} \in B^k$

in single round:

- player I selects pebble pair to be relocated and moves corresponding pebble in one structure
- player II must match move in opposite structure and maintain partial isomorphisms of size (up to) k

notions of k-pebble game equivalence, \simeq_m^k and \simeq_∞^k (= \simeq_{part}^k), and corresponding b&f systems with suitable k-pebble b&f conditions, are naturally defined; a k-pebble Ehrenfeucht–Fraïssé theorem is obtained for structures in finite relational signature

inductve refinement process yields minimal m such that \simeq_{m+1} coincides with \simeq_m (and thus with \simeq_{∞}^k) on \mathfrak{A} : the *k*-rank of \mathfrak{A} , which is bounded by $|A|^k$

complete k-pebble invariants

inductive pre-order refinement of levels \simeq_m^k over individual \mathfrak{A} yields a linearly ordered invariant $\mathfrak{I}^k(\mathfrak{A}, \mathbf{a})$ as a structural abstraction of $(\mathfrak{A}, \mathbf{a})/\simeq_\infty^k$

based on inductive refinement process of levels $A^k/(\simeq_m^k)^{\mathfrak{A}} \longrightarrow A^k/(\simeq_{\infty}^k)^{\mathfrak{A}}$, sorting in new classes lexicographically, terminating within *k*-rank of \mathfrak{A} many steps

for fixed finite relational σ , \mathfrak{I}^k provides concise, Ptime computable complete invariant w.r.t. \simeq^k_{∞} over $\operatorname{Fin}(\sigma)$:

 $\begin{array}{l} \text{for all } \mathfrak{A}, \mathfrak{B} \in \mathsf{Fin}(\sigma), \mathbf{a} \in \mathcal{A}^k, \mathbf{b} \in \mathcal{B}^k: \\ \mathfrak{A}, \mathbf{a} \simeq^k_\infty \mathfrak{B}, \mathbf{b} \ \Leftrightarrow \ \mathfrak{I}^k(\mathfrak{A}, \mathbf{a}) \simeq \mathfrak{I}^k(\mathfrak{B}, \mathbf{b}) \end{array} \right|_{(*)}$

due to its linearly ordered nature, it is 'essentially syntactic', i.e., we could replace \simeq by = in (*) after normalisation



II.4 Fixpoint logics in descriptive complexity

(A) descriptive comlexity:

logical (or other machine-independent) characterisations of complexity classes

towards an alternative analysis and understanding of the levels of algorithmic complexity of problems

example: Büchi's theorem, giving a precise match

computational power of finite automata

FMT is concerned with the complexity of structural problems, especially decision problems based on properties of structures;

the study of these (boolean) *queries* is *richer* than the standard setting, since coding & representation impose semantic constraints

review: computational complexity

NB: complexity classes are classes of problems, not of algorithms; defined in terms of resource bounds on Turing machines (think: "worst-case complexity of best possible machine")

(B) standard complexity classes:

P/Ptime:	polynomial time, termination within $p(n)$ steps on inputs of size n , for some polynomial p			
NP:		c polynomial time, based on h non-deterministic procedure		
		entially branching search & verification, olynomial size certificate and Ptime check		
Pspace:	polynomial space, termination with polynomially bounded overall memory (tape) consumption			
	potentially exponential time			
Model Theory	Summer 13	M Otto	63/	

the need for coding and the role of order

(C) structures as inputs; queries

standard input for Turing machines (or for standard algorithms) are strings/words over some suitable finite alphabet

input structures $\mathfrak{A} \in \operatorname{Fin}(\sigma)$ have to be encoded as words; as part of the correctness condition on admissible algorithms, different encodings of the same (or isomorphic) structures as input have to lead to the same output result:

- queries on Fin(σ) are, by definition, ≃-invariant; this is a non-trivial semantic constraint, which is computationally non-trivial below NP
- linearly ordered structures admit canonical encoding schemes that are unambiguous, thus trivialising the issue
 - \rightsquigarrow the crucial role of order-invariance in FMT

68

Fagin's theorem

observation: FO-definable queries are in Ptime (even Logspace)

theorem (Fagin)

NP $\equiv \exists$ -**SO**, existential second-order logic captures NP, i.e., the following are equivalent for all $C \subseteq Fin(\sigma)$:

- (i) C is definable by a sentence of existential second-order logic: $C = FMod(\exists X \varphi(X))$ for some $\varphi(X) \in FO(\sigma \cup \{X\})$
- (ii) the decision problem for $\mathcal{C} \subseteq Fin(\sigma)$ is in NP

NB: this is an assertion on the model checking complexity of \exists -SO, together with a matching expressive completeness result for \exists -SO !

NB: order is dispensable, since available in existential quantification

coding of configurations and runs

Summer 13

encode n^k -bounded runs of (non-deterministic) TM $\mathcal{M} = (\Gamma, Q, q_0, q^+, q^-, \Delta)$ on input structures $(\mathfrak{A}, <) = (\{0, \ldots, |A| - 1\}, <, \ldots)$ with linear ordering <over $(n, <) = (\{0, \ldots, n - 1\}, <)$ for n = |A|

- use A^k as numerical domain for numbers encoded to base n
- encode run $(C_t)_{t < n^k}$ with $C_t = (q_t, \ell_t, \rho_t)$ as the graph of a function $A^k \times A^k \to A \times A^k \times A$ i.e., as a relation $R \subseteq A^{3k+2}$

initial configuration
$$C_0$$

consistency of $C_t \rightsquigarrow C_{t+1}$ with Δ
accepting final state $in \operatorname{FO}(\sigma \cup \{R, <\})$

Fagin: (implicit) FO-definability \rightsquigarrow explicit \exists -SO definability also without (the invariant use of) order

other capturing results with order $\rightarrow~$ below

65/68

relational recursion: fixpoint logics

 $\varphi(X, \mathbf{x}) \in FO_k(\sigma \cup \{X\})$ with k-ary X and matching \mathbf{x} induces operation on $\mathcal{P}(A^k)$, uniformly across all $\mathfrak{A} \in Fin(\sigma)$:

$$\begin{array}{rccc} \mathcal{F}^{\mathfrak{A}}_{\varphi} \colon \mathcal{P}(\mathcal{A}^{k}) & \longrightarrow & \mathcal{P}(\mathcal{A}^{k}) \\ P & \longmapsto & \{\mathbf{a} \in \mathcal{A}^{k} \colon \mathfrak{A}, P, \mathbf{a} \models \varphi\} \end{array}$$

easy to see: if $\varphi(X, \mathbf{x})$ is X-positive, this operation is monotone (preservation result/classically only: matching expressive completeness)

natural extensions of FO, esp. for FMT, provide recursion mechanisms based on such definable operations

- **least fixpoint logic LFP** has least and greatest fixpoints for positive/monotone operations
- partial fixpoint logic PFP has fixpoints for arbitrary operations (with default ∅)

Model Theory	Summer 13	M Otto	67/68

capturing results with order

thm (Immerman–Vardi)

Ptime \equiv LFP over linearly ordered structures

i.e., t.f.a.e. for every class $C \subseteq Fin(\sigma)$

of linearly ordered σ -structures:

- (i) $C \subseteq Fin(\sigma)$ is decidable in NP
- (ii) C is definable within Fin (σ) by a sentence of LFP (σ)

thm (Abiteboul–Vianu)

Pspace \equiv PFP over linearly ordered structures

remarks: order is crucial, simple fixpoints over FO suffice model-checking in Ptime/Pspace is obvious expressive completeness: coding & fixpoint recursion