Model Theory

guiding question:

what can/cannot be expressed in specified logical formalisms?

- analysis of expressive power and semantics
- construction, analysis and classification of models
- methods from logic, universal algebra, combinatorics, ...

classical model theory: study expressiveness of FO and its fragments over the class of all (finite and infinite) structures

non-classical model theory: study expressiveness of specific logics over specific classes of structures

e.g., finite model theory: only finite models count, lose FO compactness/proof calculi, but ...

Model Theory	Summer 13	M Otto	1/12

Model Theory

has connections with diverse areas of mathematics and computer science

in mathematics: algebra, universal algebra, set-theoretic constructions, combinatorics, discrete mathematics, logic and topology, decidability issues and algorithms, ...

in theoretical computer science: decidability and complexity, descriptive complexity, specification&verification, model checking, modelling and reasoning about finite or infinite systems, database theory, constraint satisfaction, ...

examples

groups are structures of the form $\mathfrak{G} = (G, \circ^{\mathfrak{G}}, e^{\mathfrak{G}})$ satisfying

- (G1) associativity of \circ
- (G2) e (right) neutral for \circ (G3) existence of (right) inverses for \circ

the class of all groups, $Mod({(G1), (G2), (G3)})$, is closed under

FO($\{\circ, e\}$)

- homomorphic images
- direct products
- chain limits

but not under passage to substructures, unless ...

- and how can we tell from the axioms?
- conversely, what axioms befit which classes of structures?

preservation and expressive completeness theorems

Model Theory	Summer 13	M Otto	3/12

examples

of algorithmic issues

Which logics \mathcal{L} (e.g., fragments $\mathcal{L} \subseteq FO$) are decidable for SAT (over certain classes C of structures; or, e.g., through fmp)?

• decidability and complexity of $SAT(\mathcal{L}, \mathcal{C})$, $FINSAT(\mathcal{L}, \mathcal{C})$

What is the relationship between complexity and logical definability over certain classes C of structures?

descriptive complexity theory

Do certain (undecidable) classes of problems admit syntactic representations in terms of tailor-made logics?

• expressive completeness of logics \mathcal{L} for specific purposes

examples

```
compactness for first-order logic FO
```

 $\Phi \subseteq FO(\sigma)$ satisfiable if (and only if) every *finite* subset $\Phi_0 \subseteq \Phi$ is satisfiable

first proof (Introduction to Mathematical Logic): via completeness, i.e., via detour through syntax (finiteness property obvious for consistency)

alternative proof (Model Theory, universal algebra): can construct model of Φ from models of all finite $\Phi_0 \subseteq \Phi$ using ultra-products for model construction

model construction techniques in relation to logical definability, expressiveness, FO theories

M Otto

terminology and basic notions:

Summer 13

the classes of all σ -structures, for signatures σ ,

$$\mathfrak{A} = \left(A, (f^{\mathfrak{A}})_{f \in \operatorname{fctn}(\sigma)}, (R^{\mathfrak{A}})_{R \in \operatorname{rel}(\sigma)}, (c^{\mathfrak{A}})_{c \in \operatorname{const}(\sigma)} \right)$$

with universe/domain $A \neq \emptyset$ and interpretations $\mathfrak{I}^{\mathfrak{A}}(f) = f^{\mathfrak{A}} \colon A^n \to A$ for *n*-ary function symbol f $\mathfrak{I}^{\mathfrak{A}}(R) = R^{\mathfrak{A}} \subseteq A^n$ for *n*-ary relation symbol R $\mathfrak{I}^{\mathfrak{A}}(c) = c^{\mathfrak{A}} \in A$ for constant symbol c

support **natural notions from universal algebra:** homomorphisms, isomorphisms, automorphisms, ... substructures/extensions, products, quotients, chain limits, ... reducts/expansions, ... 5/12

terminology and basic notions:

syntax (for first-order logic): σ -terms (T_{σ}) and σ -formulae (FO(σ)), free variables, FO_n(σ) = { $\varphi \in FO(\sigma)$: free(φ) \subseteq { x_1, \ldots, x_n }}, shorthand $\varphi = \varphi(x_1, \ldots, x_n)$ for $\varphi \in FO_n(\sigma)$ FO₀(σ) = { $\varphi \in FO(\sigma)$: free(φ) = \emptyset }, σ -sentences, theories $T \subseteq FO_0(\sigma)$ (*)

semantics (w.r.t. σ -structures and assignments \mathfrak{A}, β or \mathfrak{A}, \mathbf{a}) satisfaction relation: $\mathfrak{A}, \beta \models \Phi, \ \mathfrak{A}, \mathbf{a} \models \varphi(\mathbf{x}), \ \mathfrak{A} \models \varphi[\mathbf{a}]$ semantic relation of consequence, $\psi \models \varphi, \ \Phi \models \varphi$ semantic notions of satisfiability, validity, ...

(*) satisfiable theories $T \subseteq FO_0(\sigma)$ often assumed closed under \models Model Theory Summer 13 M Otto 7/12

I: Elements of Classical Model Theory

- compactness via ultra-products, Łos Theorem
- elementary substructures & extensions, elementary chains, examples of classical 'preservation theorems', Robinson consistency, Craig interpolation, Beth's theorem
- topology of types, compactness & saturation properties, countable models, realising & omitting types, ω-categoricity, Fraïssé limits

I.1 Compactness via ultra-products

direct product of family of σ -structures $(\mathfrak{A}_i)_{i \in I}$ $\mathfrak{A} = \prod_{i \in I} \mathfrak{A}_i = (\prod_i A_i, (R^{\mathfrak{A}}), (f^{\mathfrak{A}}), (c^{\mathfrak{A}}))$ with 'component-wise' interpretations of $R, f, c \in \sigma$ over $A := \prod_i A_i = \{(a(i))_{i \in I} : a(i) \in A_i \text{ f.a. } i \in I\}$

reduced product of
$$(\mathfrak{A}_i)_{i \in I}$$
 w.r.t. filter \mathcal{F} on I: $\prod_i \mathfrak{A}_i / \mathcal{F}$

obtained as natural quotient of direct product $\prod_i \mathfrak{A}_i$ w.r.t. filter-equivalence $\sim_{\mathcal{F}}$ on $\prod_i A_i$:

for $a = (a(i))_{i \in I}$, $a' = (a'(i))_{i \in I} \in \prod_i A_i$: $a \sim_{\mathcal{F}} a'$ if $\{i \in I : a(i) = a'(i)\} \in \mathcal{F}$ agreement in \mathcal{F} -many components

Model Theory	Summer 13	M Otto	9/12

filters and ultrafilters

filter \mathcal{F} (on infinite set *I*):

- $\emptyset \neq \mathcal{F} \subseteq \mathcal{P}(I) \setminus \{\emptyset\}$
- \mathcal{F} closed under supersets: $s \in \mathcal{F}, s \subseteq s' \subseteq I \implies s' \in \mathcal{F}$
- \mathcal{F} closed under (finite) intersections: $s, s' \in \mathcal{F}, \Rightarrow s \cap s' \in \mathcal{F}$

ultrafilters are maximal filters:

characterised by the condition that for every $s \in \mathcal{P}(I)$, precisely one of s or $\overline{s} = I \setminus s$ is a member of \mathcal{F}

existence: AC implies that every collection of subsets of *I* with the *finite intersection property* (fip) can be extended to an ultrafilter

examples: principal ultrafilters (boring): $\mathcal{F}_a := \{s \subseteq I : a \in s\}$; in contrast, the Frechet-filter \mathcal{F} of co-finite subsets of I, esp. of \mathbb{N} , has $\bigcap \mathcal{F} = \emptyset$, and every ultrafilter extension of \mathcal{F} is non-principal

Los Theorem

Let $\mathfrak{A} := \prod_{i} \mathfrak{A}_{i} / \mathcal{U}$ be an ultraproduct of a family $(\mathfrak{A}_{i})_{i \in I}$ of σ -structures \mathfrak{A}_{i} w.r.t. an ultrafilter \mathcal{U} on I. Then, for any $\mathfrak{a}(\mathbf{x}) = \mathfrak{a}(\mathbf{x} - \mathbf{x}) \in \mathrm{FO}_{i}(\sigma)$

Then, for any $\varphi(\mathbf{x}) = \varphi(x_1, \dots, x_n) \in FO_n(\sigma)$, and for any $\mathbf{a} = (a_1, \dots, a_n) \in (\prod_i A_i)^n$:

$$\mathfrak{A} \models \varphi \big[([a_1], \dots, [a_n]) \big] \quad \text{iff} \quad \llbracket \varphi(\mathbf{a}) \rrbracket \in \mathcal{U}$$

NB: $\llbracket \varphi(\mathbf{a}) \rrbracket = \{i \in I : \mathfrak{A}_i \models \varphi[\mathbf{a}(i)]\}$ serves as a set-valued semantic valuation over $\prod_i \mathfrak{A}_i$ and

"truth in $\prod_i \mathfrak{A}_i / \mathcal{U}$ is truth in \mathcal{U} -many components"

compactness via ultra-products

> such that, f.a. $i \in I$, the subset $\Phi_i := \{ \varphi \in \Phi : i \in s_{\varphi} \} \subseteq \Phi$ is finite

then, for a family of models $\mathfrak{A}_i \models \Phi_i$, for $i \in I$:

(Los) $\prod_{i} \mathfrak{A}_{i} / \mathcal{U} \models \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \mathcal{U},$

and $\prod_{i} \mathfrak{A}_{i} / \mathcal{U} \models \varphi$ for every $\varphi \in \Phi$, since $\llbracket \varphi \rrbracket \supseteq s_{\varphi} \in \mathcal{U}$

... and suitable I and \mathcal{U} can be found (NB: multiple uses of AC)