Model Theory

guiding question: | what can/cannot be expressed
in specified logical formalisms?

e analysis of expressive power and semantics
e construction, analysis and classification of models

e methods from logic, universal algebra, combinatorics, ...

classical model theory: study expressiveness of FO and its
fragments over the class of all (finite and infinite) structures

non-classical model theory: study expressiveness of specific
logics over specific classes of structures

e.g., finite model theory: only finite models count,
lose FO compactness/proof calculi, but ...
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Model Theory

has connections with diverse areas of
mathematics and computer science

in mathematics: algebra, universal algebra, set-theoretic
constructions, combinatorics, discrete mathematics, logic and
topology, decidability issues and algorithms, ...

in theoretical computer science: decidability and complexity,
descriptive complexity, specification&verification, model checking,
modelling and reasoning about finite or infinite systems,

database theory, constraint satisfaction, ...
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examples

groups are structures of the form & = (G, 0%, %) satisfying

(G1) associativity of o
(G2) e (right) neutral for o FO({o, e})
(G3) existence of (right) inverses for o

the class of all groups, Mod({(G1), (G2),(G3)}), is closed under

e homomorphic images
e direct products
e chain limits

but not under passage to substructures, unless ...

and how can we tell from the axioms?

conversely, what axioms befit which classes of structures?

preservation and expressive completeness theorems
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examples

of algorithmic issues

Which logics £ (e.g., fragments £ C FO) are decidable for SAT
(over certain classes C of structures; or, e.g., through fmp)?

e decidability and complexity of SAT(L,C), FINSAT(L,C)

What is the relationship between complexity and logical definability
over certain classes C of structures?

e descriptive complexity theory

Do certain (undecidable) classes of problems admit syntactic
representations in terms of tailor-made logics?

e expressive completeness of logics L for specific purposes
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examples

compactness for first-order logic FO

® C FO(o) satisfiable if (and only if)
every finite subset ¥y C O is satisfiable

first proof (Introduction to Mathematical Logic):
via completeness, i.e., via detour through syntax
(finiteness property obvious for consistency)

alternative proof (Model Theory, universal algebra):
can construct model of ® from models of all finite &5 C ¢
using ultra-products for model construction

model construction techniques in relation to
logical definability, expressiveness, FO theories
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terminology and basic notions:

the classes of all o-structures, for signatures o,
2 = (A, (fm)fefctn(a)a (Rm)RErel(a)a (CQ[)CECODSt(O'))

with universe/domain A = () and interpretations

J¥4(f) = f*: A" = A for n-ary function symbol f
J4R) = R* C A" for n-ary relation symbol R
)= e A for constant symbol ¢

support natural notions from universal algebra:
homomorphisms, isomorphisms, automorphisms, ...
substructures/extensions, products, quotients, chain limits, ...

reducts/expansions, . ..
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terminology and basic notions:

syntax (for first-order logic):
o-terms (T,) and o-formulae (FO(0)), free variables,

FOn(0) = {p € FO(0): free(y) C {x1,...,xn}}.
shorthand ¢ = p(x1,...,x,) for ¢ € FO,(0)

FOqo(co) = {4 € FO(0): free(¢) = 0}, o-sentences,
theories T C FOq(c) )

semantics (w.r.t. o-structures and assignments 2, 3 or 2, a)
satisfaction relation: 2, 5 = ®, A, a = ¢(x), A = ¢|a]
semantic relation of consequence, ¥ = ¢, ® E ¢

semantic notions of satisfiability, validity, . ..

(*) satisfiable theories T C FOq(c) often assumed closed under |=
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I: Elements of Classical Model Theory

e compactness via ultra-products, Los Theorem

e elementary substructures & extensions, elementary chains,
examples of classical ‘preservation theorems’,
Robinson consistency, Craig interpolation, Beth's theorem

e topology of types, compactness & saturation properties,

countable models, realising & omitting types,
w-categoricity, Fraissé limits

Model Theory Summer 13 M Otto 8/12



.1 Compactness via ultra-products

direct product of family of o-structures (21;)ic

2A = HiEl Q[i - (H/ Aia (Rm)v (le)7 (CQ[))
with ‘component-wise’ interpretations of R, f,c € o
over A:=TT; A = {(a(i))iesr: a(i) € Aj fa. ie I}

reduced product of (2;)ic) w.r.t. filter F on I:  [[. ; / F

obtained as natural quotient of direct product [ ], ;
w.r.t. filter-equivalence ~7 on []; A;:

for a = (a(i))ier, @ = (a'())ier € I1; A
a~rad if {iel:a()=4a()}eF

agreement in /-many components
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filters and ultrafilters

filter F (on infinite set /):

o 0 £ FCP(\{0}
e F closed under supersets: s€ F,s Cs'C| = s’ F
e F closed under (finite) intersections: s,s’ € F, = sNs' € F

ultrafilters are maximal filters:

characterised by the condition that for every s € P(/),
precisely one of s or 5=1/\s is a member of F

existence: AC implies that every collection of subsets
of I with the finite intersection property (fip)
can be extended to an ultrafilter

examples: principal ultrafilters (boring): F, := {5 Cl:ae 5};
in contrast, the Frechet-filter F of co-finite subsets of /, esp. of N,
has (V. F = 0, and every ultrafilter extension of F is non-principal
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to0s Theorem

Let 2 := [];2; / U be an ultraproduct
of a family (Ql,-)l.el of o-structures ; w.r.t. an ultrafilter &/ on /.

Then, for any ¢(x) = @(x1,...,xn) € FOp(0),
and for any a = (a1,...,an) € ([[; A)™

A= ol([a] -, [an])] iff [e(a)] e

NB: [¢(a)] = {i € I: A = pla(i)]} serves as
a set-valued semantic valuation over [[;2; and

“truth in [, 24 /L{ is truth in //-many components”
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compactness via ultra-products

idea: for given ® C FOgp(o), find / and ultrafilter ¢ on |

together with map s: & — U
© > Sy

such that, f.a. i € I, the subset
O ={pecd:ics,} CPis finite

then, for a family of models 2; = ®;, for i € I:
(Los) 11,2 /L{ = iff o] €U,
and [, 2 /U = ¢ for every ¢ € ®, since [¢] D s, €U

...and suitable / and U can be found (NB: multiple uses of AC)
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