Exercises No.7

Exercise 1 [countably many colours]

Let $\sigma = \{P_i : i \in \mathbb{N}\}$ be a signature consisting of a countable supply of unary predicates P_i , and let T be the FO(σ)-theory axiomatised by the following sentences, for all finite partial maps ρ from \mathbb{N} to $\{0, 1\}$:

$$\varphi_{\rho} := \exists x \big(\bigwedge \{ P_i x \colon \rho(i) = 1 \} \land \bigwedge \{ \neg P_i x \colon \rho(i) = 0 \} \big).$$

Show that T is a consistent and complete theory. Analyse $S_1(T)$ and discuss the class of countable models of T. Show that T cannot have any atomic models, but that all models of T are ω -homogeneous (and even strongly homogeneous). In which cardinalities does T have saturated models?

Suggested Homework Exercises

Exercise 2 [atomic and saturated countable models]

Show for all satisfiable, complete, countable theories T: if T has a countable saturated model, then it also has an atomic model.

Hint: any non-trivial open subset of $S_n(T)$ that does not contain any isolated type must have cardinality 2^{ω} (the cardinality of the complete binary tree); this (topo)logical argument uses an inductive binary splitting of an initial basis open set without O_{φ} isolated elements to embed the complete binary tree injectively.

Curious extra: if T has at most countably many countable models up to \simeq , then among them there must be an atomic and a saturated one; unless T is ω -categorical these two are distinct, but it is impossible that these are the only two isomorphism types (why?).

Exercise 3 [Fraïssé limits]

Which of the following classes K_i of finite structures possess a Fraïssé limit? Determine the limit structure and discuss its theory.

- (i) K_1 : finite graphs without *n*-cliques (for fixed $n \ge 3$)
- (ii) K_2 : finite planar graphs
- (iii) K_3 : finite bipartite graphs (in signature $\tau = \{E\}$)
- (iv) K_4 : finite bipartite coloured graphs (in signature $\tau = \{E, P\}$)
- (v) K_5 : finite equivalence relations
- (vi) K_6 : finite linear orderings
- (vii) K_7 : acyclic finite graphs