Exercises No.6

Exercise 1 [countably many colours]

Let $\sigma = \{P_i : i \in \mathbb{N}\}$ be a signature consisting of a countable supply of unary predicates P_i , and let T be the FO(σ)-theory axiomatised by the following sentences, for all finite partial maps ρ from \mathbb{N} to $\{0, 1\}$:

$$\varphi_{\rho} := \exists x \left(\bigwedge \{ P_i x \colon \rho(i) = 1 \} \land \bigwedge \{ \neg P_i x \colon \rho(i) = 0 \} \right).$$

Show that T is a consistent and complete theory; analyse $S_1(T)$; and discuss the class of countable models of T. In which cardinalities does T have saturated models?

Exercise 2 [type spaces]

Consider the FO-theories of $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1, <)$ and of its reduct $\mathfrak{N} \upharpoonright \{<\}$. For each of these, discuss $S_1(T)$, the existence of countable saturated models, and of atomic models.

Exercise 3 [κ -saturated models: Prop. 4.12]

Let κ be an infinite regular cardinal (e.g., $\kappa = \omega$ or $\kappa = \omega_1$, the smallest uncountable ordinal). Show that any model $\mathfrak{A} \models T$ possesses an elementary extension $\hat{\mathfrak{A}} \succeq \mathfrak{A}$ that is κ -saturated. Hint: obtain $\hat{\mathfrak{A}}$ as a limit of an elementary chain $(\mathfrak{A}_{\alpha})_{\alpha < \kappa}$ in which each $\mathfrak{A}_{\alpha+1}$ realises all types with fewer than κ parameters over \mathfrak{A}_{α} ; regularity of κ means that κ is not the union of fewer than κ smaller ordinals, whence every subset of $\bigcup_{\alpha < \kappa} A_{\alpha}$ of size $< \kappa$ must be contained in some A_{α} .

Exercise 4 [equivalence relations]

- (a) Consider the FO-theory T of one equivalence relation \sim and countably many constant symbols $(c_i)_{i \in \mathbb{N}}$ saying that the c_i are pairwise inequivalent and that every equivalence class is infinite. Determine the type space $S_1(T)$ and classify the countable models of T up to isomorphism.
- (b) Investigate the completions and the type spaces of the (incomplete) theory of one equivalence relation \sim (to be continued in Exercise 5 below).

Suggested Homework Exercises

Exercise 5 [equivalence relations]

Continue the analysis of the completions of the FO-theory of one equivalence relation \sim from the previous exercise. A good starting point is the classification of all countable models up to isomorphism and up to elementary equivalence. What are atomic and ω -saturated models?

Exercise 6 [back&forth in saturated models: Prop. 4.14]

Let κ be an infinite cardinal (e.g., $\kappa = \omega$ or $\kappa = \omega_1$, the smallest uncountable ordinal). Show that any two elementarily equivalent κ -saturated σ -structures \mathfrak{A} and \mathfrak{B} of cardinality κ are isomorphic.

Exercise 7 [extra for lovers of set theory: end extensions]

An elementary *end extension* of a model of set theory ZF, $\mathfrak{A} = (A, \in^{\mathfrak{A}})$, is a proper elementary extension $\mathfrak{B} \succeq \mathfrak{A}$ in which no member of $A \subseteq B$ gets new elements in \mathfrak{B} , i.e., in which the extension of old sets remains unchanged in the sense that f.a. $a \in A$

$$\{b \in B \colon b \in^{\mathfrak{B}} a\} = \{b \in A \colon b \in^{\mathfrak{B}} a\} = \{b \in A \colon b \in^{\mathfrak{A}} a\} \subseteq A$$

Show that every countable $\mathfrak{A} \models ZF$ admits an elementary end extension.

Hint: The crucial step is this. For a new constant c put $T := D_{el}(\mathfrak{A}) \cup \{\neg c \in c_a : a \in A\}$. We are looking for a model of T that omits all types of the form

$$p_a := \{ x \in c_a \} \cup \{ \neg x = c_d \colon d \in^{\mathfrak{A}} a \}.$$

It remains to show that none of these types is isolated in $S_1(T)$. Show that $\varphi(x,c) \in FO(\{\in,c\}_A)$ is consistent with T iff

$$\mathbf{D}_{\mathrm{el}}(\mathfrak{A}) \models \forall z \exists y \exists x (\neg y \in z \land \varphi(x, y)).$$

From this, one can use standard set theoretic (ZF) reasoning in \mathfrak{A} to show that, if $T \cup \{\varphi(x,c)\} \models x \in c_a$, then for some $d \in A$, $\varphi(c_d,c) \wedge c_d \in c_a$ is consistent with T, whence $\varphi(x,c)$ does not isolate p_a .