Exercises No.3

Exercise 1 [warm-up: well-orderings]

Recall that the class of ordinals (in ZFC) is formed by those sets that are transitive (downward-closed) w.r.t. the \in -relation and well-ordered by the \in -relation; they form a complete system of representatives for all well-orderings up to \simeq . You may treat the following from a model-theoretic point of view (set-theoretically naive).

- (i) The class of well-orderings is not first-order definable (not even Δ -elementary).
- (ii) Any ordered sum (order-theoretic concatenation) of two well-orderings is a well-ordering. How about infinite ordered sums?
- (iii) Is the class of well-orderings closed under limits of chains?
- (iv) Is the class of ordinals closed under (set-)unions?

Exercise 2 [warm-up: variation on Tarski's thm, Thm 2.6/Lemma 2.12]

Show (the expressive completeness claim of) Tarski's theorem in the following variant, where $\Delta := \forall -FO_0[\sigma]$ with the associated notion of \forall -transfer $\mathfrak{A} \Rightarrow_{\forall} \mathfrak{B}$: any satisfiable $\varphi \in FO_0[\sigma]$ that is preserved under \Rightarrow_{\forall} is equivalent to some $\varphi' \in \forall -FO[\sigma]$.

Exercise 3 [the $\forall^* \exists^*$ fragment of FO]

Consider the fragment $\Delta \subseteq FO_0[\sigma]$ consisting of all $\forall^* \exists^*$ -sentences in $FO[\sigma]$, i.e., all prenex sentences of the form $\forall \mathbf{x} \exists \mathbf{y} \chi(\mathbf{x}, \mathbf{y})$ with a quantifier-free kernel χ and define $\forall^* \exists^*$ -transfer $\mathfrak{A} \Rightarrow_{\forall^* \exists^*} \mathfrak{B}$ accordingly.

- (a) Show that $\mathfrak{A} \Rightarrow_{\forall^*\exists^*} \mathfrak{B}$ implies the existence of σ -structures $\mathfrak{A}' \equiv \mathfrak{A}$ and $\mathfrak{B}' \succeq \mathfrak{B}$ such that $\mathfrak{B} \subseteq \mathfrak{A}' \subseteq \mathfrak{B}'$.
- (b) Show that preservation of $\varphi \in FO_0[\sigma]$ under limits of chains implies its preservation under $\Rightarrow_{\forall^*\exists^*}$.

Hints: for (a), work with FO-theories, algebraic and (the universal parts of) elementary diagrams as appropriate to specify suitable \mathfrak{A}'_B and $\mathfrak{B}'_{A'}$;

towards (b), use the extension configuration from (a) repeatedly to construct an elementary ω -chain $\mathfrak{B} = \mathfrak{B}_0 \preccurlyeq \mathfrak{B}_1 \preccurlyeq \cdots$ with an interleaving ω -chain of structures $\mathfrak{A}_i \equiv \mathfrak{A}$,

$$\mathfrak{B}_0 \subseteq \mathfrak{A}_0 \subseteq \mathfrak{B}_1 \subseteq \mathfrak{A}_1 \subseteq \mathfrak{B}_1 \subseteq \cdots$$

Then these chains have the same limits $\mathfrak{A}_{\omega} = \mathfrak{B}_{\omega}$. If $\mathfrak{A} \models \varphi$ and if φ is preserved under chains, then $\mathfrak{A}_{\omega} \models \varphi$ implies that also $\mathfrak{B} = \mathfrak{B}_0 \preccurlyeq \mathfrak{B}_{\omega} = \mathfrak{A}_{\omega} \models \varphi$. NB: the topic of this exercise is pursued further in Exercise 4.

Suggested Homework Exercises

Exercise 4 $[\forall^* \exists^* \text{ preservation and limits of chains}]$

Continue from the basis of Exercise 3 above to show that the following are equivalent for any satisfiable $\varphi \in FO_0[\sigma]$:

- (i) φ is preserved under limits of chains;
- (ii) $\varphi \equiv \varphi'$ where φ' is an $\forall^* \exists^*$ -sentence.

Hint: for the expressive completeness argument adapt the proof idea from Lemma 2.12 and Exercise 2 above to the $\forall^* \exists^*$ -fragment (which, although not closed under conjunction and disjunction literally, is closed in this sense up to logical equivalence).

Exercise 5 [Lyndon–Tarski Theorem]

Show that the following are equivalent for any satisfiable $\varphi \in FO_0[\sigma]$:

- (i) φ is preserved under (not necessarily surjective) homomorphisms;
- (ii) $\varphi \equiv \varphi'$ where φ' is positive existential ($\varphi' \in \exists_{pos}\text{-}FO(\sigma)$).

Hint: for the expressive completeness argument adapt the proof idea from Thm 2.6 (Tarski's thm) to show that $\Phi \models \varphi$ where Φ is the set of all \exists_{pos} -FO(σ) consequences of φ . To this end, let $\mathfrak{A} \models \Phi$, and establish $\mathfrak{A} \models \varphi$ as follows.

- (a) Let $\Psi := \text{Th}(\mathfrak{A}) \cap \{\neg \exists \mathbf{x} \chi(\mathbf{x}) \colon \chi \text{ pos, qfr-free }\}$ and show that $\Psi \cup \{\varphi\}$ is satisfiable.
- (b) For any $\mathfrak{B} \models \Psi \cup \{\varphi\}$, show that $\operatorname{Th}(\mathfrak{A}) \cup D_{\operatorname{pos}}(\mathfrak{B})$ is statisfiable, where $D_{\operatorname{pos}}(\mathfrak{B})$ is the positive (part of the) algebraic diagram of \mathfrak{B} . Conclude that there must be some $\mathfrak{A}' \equiv \mathfrak{A}$ to which \mathfrak{B} can be mapped homomorphically. It follows that $\mathfrak{A} \models \varphi$.