Exercises No.13

Exercise 1 [warm-up: fixpoint formalisations]

Provide definitions of the following in LFP:

- (a) the graph of addition as a 3-ary relation over the standard universes (n, <), $n = \{0, \ldots, n-1\}$ with the natural linear ordering, uniformly for $n \ge 1$.
- (b) connectivity as a property of finite (or infinite) graphs.
- (c) the set of winning positions in the k-pebble game over (the disjoint union of two) graphs, for fixed k.

Exercise 2 [on LFP and FO_{∞}^{k}]

Show that least fixed points over X-positive formulae in $FO^k(\sigma \cup \{X\})$ may not be closed under \simeq_{∞}^k over finite structures if φ may have free first-order variables that serve as parameters in the fixpoint iteration.

Exercise 3 [Immerman–Vardi and Abiteboul–Vianu theorems]

Sketch the encoding of the runs of a Ptime or Pspace Turing machine that recognises some class C of linearly ordered finite graphs to obtain a recipe for defining that same class in LFP(E) or PFP(E), respectively.

Suggested Homework Exercise

Exercise 4 [fmp for FO^2]

Analyse the finite and exponential small model properties for $FO^2(\sigma)$ for fixed finite relational σ along these lines:

(a) (relational skolemisation): every $\varphi \in FO_0^2(\sigma)$ is satisfiability equivalent with some $\hat{\varphi} \in FO_0^2(\hat{\sigma})$ of the following normal form

$$\hat{\varphi} = \forall x \forall y \psi_0(xy) \land \bigwedge_{i=1}^m \forall x \exists y \psi_i(xy)$$

for quantifier-free formulae ψ_i in an extended relational vocabulary $\hat{\sigma}$, where $\hat{\varphi}$ (and $\hat{\sigma}$) are linearly bounded in the size of φ (and polynomial time computable).

(b) (small models for $\hat{\varphi}$ in normal form): every satisfiable $\hat{\varphi} \in FO_0^2$ as above possesses a model whose size is linearly bounded in the number of quantifier-free 2-types in signature $\hat{\sigma}$.

Hint for (b): starting from an arbitrary model $\mathfrak{A} \models \hat{\varphi}$, try to obtain a more concise variant $\mathfrak{B} \simeq_2^2 \mathfrak{A}$, which realises the same quantifier-free 2-types and realises each \simeq_1^2 -type of a single element either precisely once or some small finite number of times, by making allocations of quantifier-free 2-types correspondingly.