Martin Otto
 Summer 2013

Exercises No. 13

Exercise 1 [warm-up: fixpoint formalisations]
Provide definitions of the following in LFP:
(a) the graph of addition as a 3-ary relation over the standard universes $(n,<)$, $n=\{0, \ldots, n-1\}$ with the natural linear ordering, uniformly for $n \geqslant 1$.
(b) connectivity as a property of finite (or infinite) graphs.
(c) the set of winning positions in the k-pebble game over (the disjoint union of two) graphs, for fixed k.

Exercise 2 [on LFP and FO_{∞}^{k}]
Show that least fixed points over X-positive formulae in $\mathrm{FO}^{k}(\sigma \cup\{X\})$ may not be closed under \simeq_{∞}^{k} over finite structures if φ may have free first-order variables that serve as parameters in the fixpoint iteration.

Exercise 3 [Immerman-Vardi and Abiteboul-Vianu theorems]
Sketch the encoding of the runs of a Ptime or Pspace Turing machine that recognises some class \mathcal{C} of linearly ordered finite graphs to obtain a recipe for defining that same class in $\operatorname{LFP}(E)$ or $\operatorname{PFP}(E)$, respectively.

Suggested Homework Exercise

Exercise 4 [fmp for FO^{2}]
Analyse the finite and exponential small model properties for $\mathrm{FO}^{2}(\sigma)$ for fixed finite relational σ along these lines:
(a) (relational skolemisation): every $\varphi \in \mathrm{FO}_{0}^{2}(\sigma)$ is satisfiability equivalent with some $\hat{\varphi} \in \mathrm{FO}_{0}^{2}(\hat{\sigma})$ of the following normal form

$$
\hat{\varphi}=\forall x \forall y \psi_{0}(x y) \wedge \bigwedge_{i=1}^{m} \forall x \exists y \psi_{i}(x y)
$$

for quantifier-free formulae ψ_{i} in an extended relational vocabulary $\hat{\sigma}$, where $\hat{\varphi}$ (and $\hat{\sigma}$) are linearly bounded in the size of φ (and polynomial time computable).
(b) (small models for $\hat{\varphi}$ in normal form): every satisfiable $\hat{\varphi} \in \mathrm{FO}_{0}^{2}$ as above possesses a model whose size is linearly bounded in the number of quantifier-free 2-types in signature $\hat{\sigma}$.

Hint for (b): starting from an arbitrary model $\mathfrak{A} \models \hat{\varphi}$, try to obtain a more concise variant $\mathfrak{B} \simeq_{2}^{2} \mathfrak{A}$, which realises the same quantifier-free 2 -types and realises each \simeq_{1}^{2} type of a single element either precisely once or some small finite number of times, by making allocations of quantifier-free 2-types correspondingly.

