Martin Otto
 Kord Eickmeyer

Summer 2013

Exercises No. 12

Exercise 1 [warm-up]

Argue game theoretically that if player \mathbf{I} has a winning strategy for $\mathrm{G}_{\infty}^{k}(\mathfrak{A}, \mathbf{a} ; \mathfrak{B}, \mathbf{b})$, then he has a strategy to force a win within $|A|^{k} \cdot|B|^{k}$ many rounds.

Exercise 2

(a) With respect to 2-variable equivalence \equiv^{2} show the following:
(i) the class of finite linear orderings is closed under 2-variable equivalence \equiv^{2}.
(ii) two well-orderings (ordinals) are 2-pebble equivalent (w.r.t. G_{∞}^{k}) if and only if they are isomorphic. Similarly for any two well-ordered graphs.
(b) Show that, despite (a), the class of finite linear orderings is not definable (as a class of finite $<$-structures) by any sentence of $\mathrm{FO}^{2}(<)$.

Hint for (b): show that player II can win the m-round 2-pebble game played on a sufficiently long linear ordering versus its variant with a single <-edge in a suitable position reversed.

Exercise 3

Give examples of pairs of non-isomorphic finite graphs that are indistinguishable in FO^{k} (k-pebble equivalent), for given levels $k \geqslant 2$.
Can you find examples of such pairs of graphs in which k-pebble equivalence persists even w.r.t. the fragment of FO that has just k variables in the presence of "counting quantifiers" $\exists^{\geqslant i} x_{j}$ for all $i \geqslant 1$, where $\mathfrak{A}, \mathbf{a} \models \exists \exists^{\geqslant i} x_{j} \varphi$ iff $\left|\left\{a \in A: \mathfrak{A}, \mathbf{a}_{j}^{a} \models \varphi\right\}\right| \geqslant i$?
Devise an Ehrenfeucht-Fraïssé game for these more powerful levels of k-pebble equivalence with counting.

Suggested Homework Exercises

Exercise 4

Show that, classically, a first-order formula $\varphi \in \mathrm{FO}_{k}(\sigma)$ in some relational signature σ is equivalently expressible in $\mathrm{FO}^{k}(\sigma)$ if, and only if, it is invariant under the equivalence induced by the k-pebble game $\mathrm{G}_{\infty}^{k}(\mathfrak{A}, \mathbf{a} ; \mathfrak{B}, \mathbf{b})$.
What is the status of this characterisation in finite model theory?

Exercise 5 [Cf. Exercise 9.1]

Show that evenness of the size of a finite set is not definable by a sentence in $\operatorname{MSO}(\emptyset)$. Use this, and a suitable reduction argument, to show (again) that the property of having an even number of atoms is not FO-definable over finite boolean algebras, while it is <-invariantly FO-definable.
Hint: instead of the standard format one may use, for finite boolean algebras, an alternative two-sorted encoding of a set (the first sort, the set of atoms) together with its power set (the second sort) and with the element relation between the two sorts.

Exercise 6

Over the finite linear orderings $([n],<),[n]=\{1, \ldots, n\}$ with the natural ordering, consider the graph of addition as a ternary relation $R^{[n]}:=\left\{(a, b, c) \in[n]^{3}: a+b=c\right\}$. Show that $R^{[n]}$ is
(a) not uniformly FO-definable over the $([n],<)$;
(b) uniformly implicitly definable in $\mathrm{FO}(\{<, R\})$;
(c) not uniformly explicitly definable in $\mathrm{MSO}(<)$.

