Exercises No.12

Exercise 1 [warm-up]

Argue game theoretically that if player I has a winning strategy for $G_{\infty}^{k}(\mathfrak{A}, \mathbf{a}; \mathfrak{B}, \mathbf{b})$, then he has a strategy to force a win within $|A|^{k} \cdot |B|^{k}$ many rounds.

Exercise 2

- (a) With respect to 2-variable equivalence \equiv^2 show the following:
 - (i) the class of finite linear orderings is closed under 2-variable equivalence \equiv^2 .
 - (ii) two well-orderings (ordinals) are 2-pebble equivalent (w.r.t. G_{∞}^{k}) if and only if they are isomorphic. Similarly for any two well-ordered graphs.
- (b) Show that, despite (a), the class of finite linear orderings is not definable (as a class of finite <-structures) by any sentence of FO²(<).

Hint for (b): show that player II can win the m-round 2-pebble game played on a sufficiently long linear ordering versus its variant with a single <-edge in a suitable position reversed.

Exercise 3

Give examples of pairs of non-isomorphic finite graphs that are indistinguishable in FO^k (k-pebble equivalent), for given levels $k \ge 2$.

Can you find examples of such pairs of graphs in which k-pebble equivalence persists even w.r.t. the fragment of FO that has just k variables in the presence of "counting quantifiers" $\exists^{\geq i}x_j$ for all $i \geq 1$, where $\mathfrak{A}, \mathbf{a} \models \exists^{\geq i}x_j\varphi$ iff $|\{a \in A : \mathfrak{A}, \mathbf{a}_j^a \models \varphi\}| \geq i$? Devise an Ehrenfeucht–Fraïssé game for these more powerful levels of k-pebble equivalence with counting.

Suggested Homework Exercises

Exercise 4

Show that, classically, a first-order formula $\varphi \in FO_k(\sigma)$ in some relational signature σ is equivalently expressible in $FO^k(\sigma)$ if, and only if, it is invariant under the equivalence induced by the k-pebble game $G^k_{\infty}(\mathfrak{A}, \mathbf{a}; \mathfrak{B}, \mathbf{b})$.

What is the status of this characterisation in finite model theory?

Exercise 5 [Cf. Exercise 9.1]

Show that evenness of the size of a finite set is not definable by a sentence in $MSO(\emptyset)$. Use this, and a suitable reduction argument, to show (again) that the property of having an even number of atoms is not FO-definable over finite boolean algebras, while it is <-invariantly FO-definable.

Hint: instead of the standard format one may use, for *finite* boolean algebras, an alternative two-sorted encoding of a set (the first sort, the set of atoms) together with its power set (the second sort) and with the element relation between the two sorts.

Exercise 6

Over the finite linear orderings ([n], <), $[n] = \{1, \ldots, n\}$ with the natural ordering, consider the graph of addition as a ternary relation $R^{[n]} := \{(a, b, c) \in [n]^3 : a + b = c\}$. Show that $R^{[n]}$ is

- (a) not uniformly FO-definable over the ([n], <);
- (b) uniformly implicitly definable in $FO(\{<, R\})$;
- (c) not uniformly explicitly definable in MSO(<).