Martin Otto Kord Eickmeyer Summer 2013

Exercises No.11

Exercise 1 [warmup: expressive power of MSO] Which of the following queries are MSO definable?

- which of the following queries are mod demable:
- (i) Reachability of a green node (e.g., in directed, finite graphs).
- (ii) Acyclicity of directed, finite graphs.
- (iii) Mirror symmetry of finite coloured linear orderings.
- (iv) Planarity of finite graphs.

Exercise 2 [Deterministic Finita Automata and the Theorem of Myhill-Nerode] Let Σ be a finite alphabet. A *deterministic finite automaton (DFA)* \mathcal{A} is a tuple (Q, δ, q_0, A) consisting of

- (i) a finite set Q (the set of *states* of the automaton),
- (ii) a function $\delta: Q \times \Sigma \to Q$ (the transition function),
- (iii) a state $q_0 \in Q$ (the *initial state*), and
- (iv) a set $A \subseteq Q$ of accepting states.

We define the extended transition function $\delta^* \colon Q \times \Sigma^* \to Q$ by

$$\delta^*(q,\varepsilon) := q, \delta^*(q,wa) := \delta(\delta^*(q,w),a)$$

for $q \in Q$, $a \in \Sigma$ and $w \in \Sigma^*$. The automaton is said to *accept* a word w iff $\delta^*(q_0, w) \in A$. The *language accepted by* \mathcal{A} is defined as

$$L_{\mathcal{A}} := \{ w \in \Sigma^* \colon \mathcal{A} \text{ accepts } w \}.$$

Let $L \subseteq \Sigma^*$ be a language. Then t.f.a.e.:

- (i) L is regular (i.e., $L = L_{\mathcal{A}}$ for some DFA \mathcal{A}),
- (ii) \approx_L has finite index
- (iii) \sim_L has finite index
- (iv) L is a union of classes for some finite index right-invariant equivalence relation on Σ^* .

Hint: To show that (iv) implies (i), construct a DFA with Σ^*/\sim as state space and transition function $([w]_{\sim}, a) \mapsto [wa]_{\sim}$. What makes the latter well-defined?

Suggested Homework Exercises

Exercise 3 [MSO-definable subsets of \mathbb{N}]

For $S \subseteq \mathbb{N}$ consider the class ORD(S) of those finite linear orderings whose length is in S. Show that ORD(S) is MSO-definable if, and only if, S is *periodic* in the sense of being a finite union of sets of the form $\{a + np : n \in \mathbb{N}\}$ for suitable $a, p \in \mathbb{N}$.

Hint: The elements of ORD(S) can be viewed as strings over a unary alphabet. In Exercise 2, we showed that there is DFA \mathcal{A} with $ORD(S) = L_{\mathcal{A}}$. Examine the structure of this DFA.

Exercise 4 [Hanf's Theorem with cut-off]

Let σ be a finite relational signature and $\ell \in \mathbb{N}$. For a σ -structure \mathfrak{A} and $a \in A$, the ℓ neighbourhood type $\iota_{\mathfrak{A}}^{\ell}(a)$ is the isomorphism type of $(\mathfrak{A} \upharpoonright N^{\ell}(a), a)$. For a neighbourhood type ι and structure \mathfrak{A} we set

$$|\mathfrak{A}|_{\iota,\ell} := |\iota(\mathfrak{A})| = |\{a \in A \colon \iota_{\mathfrak{A}}^{\ell}(a) = \iota\}|.$$

Define $\ell(m)$ by

$$\ell(0) := 1$$

$$\ell(m+1) := 3 \cdot \ell(m) + 1$$

i.e., $\ell(m) = (3^{m+1} - 1)/2$.

Let \mathfrak{A} and \mathfrak{B} be two σ -structures and $m \in \mathbb{N}$. Suppose that for some $e \in \mathbb{N}$, the $\ell(m)$ -neighbourhoods in \mathfrak{A} and \mathfrak{B} have less than e elements, and that for each $\ell(m)$ -neighbourhood type ι

$$|\mathfrak{A}|_{\iota,\ell(m)} = |\mathfrak{B}|_{\iota,\ell(m)}$$
 or $|\mathfrak{A}|_{\iota,\ell(m)}, |\mathfrak{B}|_{\iota,\ell(m)} \ge e \cdot m.$

Show that $\mathfrak{A} \equiv_m \mathfrak{B}$.

Hint: Show that $(I_j)_{j \leq m}$ defined by

$$I_j := \left\{ \bar{a} \mapsto \bar{b} \colon \left(\mathfrak{A} \upharpoonright \bigcup N^{\ell(j)}(a_i), \bar{a} \right) \simeq \left(\mathfrak{B} \upharpoonright \bigcup N^{\ell(j)}(b_i), \bar{b} \right) \text{ and } \operatorname{length}(\bar{a}) \leqslant m - j \right\}$$

defines a partial isomorphism between \mathfrak{A} and \mathfrak{B} , with the convention that

$$I_m = \{() \mapsto ()\}$$

contains the single mapping which maps the empty tuple to the empty tuple. When extending a partial mapping $\bar{a} \mapsto \bar{b} \in I_j$, distinguish two cases according to whether the $\ell(m-j)$ -neighbourhood of the newly chosen element touches the $\ell(m-j)$ -neighbourhood of some previously chosen element or not.