Exercises No. 1

Exercise 1 [filters]
Consider $I \neq \emptyset$ and $\mathcal{B} \subseteq \mathcal{P}(I)$ with the finite intersection property (f.i.p.). Show the following:
(a) closure under intersection (\cap) and supersets (\supseteq) preserves f.i.p.
(b) $\mathcal{F}(\mathcal{B})$, defined as the closure under supersets of the closure under (finite) intersections of \mathcal{B}, is a filter extending \mathcal{B}.
(c) if $s, \bar{s} \notin \mathcal{B}$ then at least one of $\mathcal{B} \cup\{s\}$ or $\mathcal{B} \cup\{\bar{s}\}$ has f.i.p. (and hence extends to a filter).
(d) if $\mathcal{B} \subseteq \mathcal{P}(I)$ is maximal with f.i.p., then $\mathcal{B}=\mathcal{F}(\mathcal{B})$ is an ultrafilter on I.

Use Zorn's Lemma to show that every $\mathcal{B} \subseteq \mathcal{P}(I)$ with f.i.p. can be extended to an ultrafilter $\mathcal{U} \supseteq \mathcal{B}$.

Exercise 2 [cf. Lemma 1.3]
Let \mathcal{F} be a filter on I.
(a) Show that the relation $\sim_{\mathcal{F}}$ is an equivalence relation on $\prod_{i} A_{i}$ (for any family of non-empty sets $\left.\left(A_{i}\right)_{i \in I}\right)$.
(b) Show that $\sim_{\mathcal{F}}$ is a congruence w.r.t. any function $f^{\mathfrak{A}}$ in the direct product $\mathfrak{A}:=$ $\prod_{i} \mathfrak{A}_{i}$ of a family of structures $\left(\mathfrak{A}_{i}=\left(A_{i}, f^{\mathfrak{A}_{i}}\right)\right)_{i \in I}$.
(c) Show that for a family of structures $\left(\mathfrak{A}_{i}=\left(A_{i}, R^{\mathfrak{A}_{i}}\right)\right)_{i \in I}$ with relation R, and for $\mathbf{a} \sim_{\mathcal{F}} \mathbf{a}^{\prime}$ (component-wise equivalence): $\|R \mathbf{a}\| \in \mathcal{F} \Leftrightarrow\left\|R \mathbf{a}^{\prime}\right\| \in \mathcal{F}$.

Exercise 3 [cf. Los Theorem, Theorem 1.5]
Which steps in the inductive treatment of the usual connectives and quantifiers of FO go through for arbitrary filters (not necessarily ultrafilters)? Provide proofs or counterexamples (for \vee, \forall, and \neg).

Suggested Homework Exercises

Exercise 4 [reduced products preserve Horn formulae]
A Horn clause is a formula of the form

$$
\varphi=\left(\theta_{1} \wedge \ldots \wedge \theta_{m}\right) \rightarrow \sigma,
$$

where $\theta_{1}, \ldots, \theta_{m}$ and σ are atomic formulae. We allow $m=0$ and $\sigma=\perp$. A Horn formula is a formula that is built from Horn clauses using \wedge, \exists and \forall.

Show that Horn formulae are preserved under taking reduced products, i.e., if φ is a Horn formula and $\left(\mathfrak{A}_{i}, \mathbf{a}(i)\right)$ such that

$$
\|\varphi[\mathbf{a}]\| \in \mathcal{F},
$$

then

$$
\mathfrak{A}^{I} / \mathcal{F} \models \varphi .
$$

Exercise 5 [non-standard models]
Analyse non-standard extensions $\mathfrak{R}^{*} \succcurlyeq \mathfrak{R}$ and $\mathfrak{N}^{*} \succcurlyeq \mathfrak{N}$ obtained as ultrapowers $\mathfrak{A}^{\mathbb{N}} / \mathcal{U}$ w.r.t. suitable ultrafilters \mathcal{U} over \mathbb{N} in relation to the base structures $\mathfrak{A}=\mathfrak{R}, \mathfrak{N}$. For instance,
(i) which sequences $\left(a_{n}\right) \in \mathbb{N}^{\mathbb{N}}$ represent infinitely large numbers?
(ii) which sequences $\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ represent points in the infinitesimal neighbourhood of $a \in \mathbb{R}$?
(iii) what are the possible order-types for \mathfrak{N}^{*} and \mathfrak{R}^{*} ?
(iv) investigate the equivalence relations of being "finitely far apart" in \mathfrak{N}^{*} and of being "of the same order of magnitude" in $\mathfrak{R}^{*} \backslash\{0\}$.

