Exercises No.1

Exercise 1 [filters]

Consider $I \neq \emptyset$ and $\mathcal{B} \subseteq \mathcal{P}(I)$ with the *finite intersection property* (*f.i.p.*). Show the following:

- (a) closure under intersection (\cap) and supersets (\supseteq) preserves f.i.p.
- (b) $\mathcal{F}(\mathcal{B})$, defined as the closure under supersets of the closure under (finite) intersections of \mathcal{B} , is a filter extending \mathcal{B} .
- (c) if $s, \overline{s} \notin \mathcal{B}$ then at least one of $\mathcal{B} \cup \{s\}$ or $\mathcal{B} \cup \{\overline{s}\}$ has f.i.p. (and hence extends to a filter).
- (d) if $\mathcal{B} \subseteq \mathcal{P}(I)$ is maximal with f.i.p., then $\mathcal{B} = \mathcal{F}(\mathcal{B})$ is an ultrafilter on I.

Use Zorn's Lemma to show that every $\mathcal{B} \subseteq \mathcal{P}(I)$ with f.i.p. can be extended to an ultrafilter $\mathcal{U} \supseteq \mathcal{B}$.

Exercise 2 [cf. Lemma 1.3]

Let \mathcal{F} be a filter on I.

- (a) Show that the relation $\sim_{\mathcal{F}}$ is an equivalence relation on $\prod_i A_i$ (for any family of non-empty sets $(A_i)_{i \in I}$).
- (b) Show that $\sim_{\mathcal{F}}$ is a congruence w.r.t. any function $f^{\mathfrak{A}}$ in the direct product $\mathfrak{A} := \prod_{i} \mathfrak{A}_{i}$ of a family of structures $(\mathfrak{A}_{i} = (A_{i}, f^{\mathfrak{A}_{i}}))_{i \in I}$.
- (c) Show that for a family of structures $(\mathfrak{A}_i = (A_i, R^{\mathfrak{A}_i}))_{i \in I}$ with relation R, and for $\mathbf{a} \sim_{\mathcal{F}} \mathbf{a}'$ (component-wise equivalence): $||R\mathbf{a}|| \in \mathcal{F} \Leftrightarrow ||R\mathbf{a}'|| \in \mathcal{F}$.

Exercise 3 [cf. Los Theorem, Theorem 1.5]

Which steps in the inductive treatment of the usual connectives and quantifiers of FO go through for arbitrary filters (not necessarily ultrafilters)? Provide proofs or counterexamples (for \lor , \forall , and \neg).

Suggested Homework Exercises

Exercise 4 [reduced products preserve Horn formulae] A *Horn clause* is a formula of the form

$$\varphi = (\theta_1 \wedge \ldots \wedge \theta_m) \to \sigma,$$

where $\theta_1, \ldots, \theta_m$ and σ are atomic formulae. We allow m = 0 and $\sigma = \bot$. A Horn formula is a formula that is built from Horn clauses using \land , \exists and \forall .

Show that Horn formulae are preserved under taking reduced products, i.e., if φ is a Horn formula and $(\mathfrak{A}_i, \mathbf{a}(i))$ such that

$$\|\varphi[\mathbf{a}]\| \in \mathcal{F},$$

then

$$\mathfrak{A}^{I}/\mathcal{F}\models\varphi.$$

Exercise 5 [non-standard models]

Analyse non-standard extensions $\mathfrak{R}^* \succeq \mathfrak{R}$ and $\mathfrak{N}^* \succeq \mathfrak{N}$ obtained as ultrapowers $\mathfrak{A}^{\mathbb{N}}/\mathcal{U}$ w.r.t. suitable ultrafilters \mathcal{U} over \mathbb{N} in relation to the base structures $\mathfrak{A} = \mathfrak{R}, \mathfrak{N}$. For instance,

- (i) which sequences $(a_n) \in \mathbb{N}^{\mathbb{N}}$ represent infinitely large numbers?
- (ii) which sequences $(a_n) \in \mathbb{R}^{\mathbb{N}}$ represent points in the infinitesimal neighbourhood of $a \in \mathbb{R}$?
- (iii) what are the possible order-types for \mathfrak{N}^* and \mathfrak{R}^* ?
- (iv) investigate the equivalence relations of being "finitely far apart" in \mathfrak{N}^* and of being "of the same order of magnitude" in $\mathfrak{R}^* \setminus \{0\}$.