Algorithmic Discrete Mathematics 5. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Andreas Paffenholz Silke Horn

SS 2013 12/13 June 2013

Groupwork

Exercise G1

Using the Ford-Fulkerson method, compute a maximal flow in the following network:

Also determine a minimal cut in G.

Exercise G2

The goal of this exercise is to show that the Ford-Fulkerson method need not terminate if we allow irrational edge capacities.

Consider the following network with capacities c_e .

Here X is some large integral constant and $\phi = \frac{1}{2}(\sqrt{5}-1)$. (Note that $\phi^n = \phi^{n+1} + \phi^{n+2}$ for any $n \ge 0$.)

- (a) Show by induction that for any integer $n \ge 0$ the residual capacities of the three horizontal edges can be brought to the values $\phi^n, 0, \phi^{n+1}$.
- (b) Conclude that Ford-Fulkerson need not terminate on this network. Does it converge?
- (c) Find a network where Ford-Fulkerson converges, but not to a maximal flow.

Exercise G3

Let (G = (V, E), s, t, c) be a network with integral capacities $c(e) \in \mathbb{Z}$ for all edges $e \in E$. Prove or refute the following assertions:

- (a) If all capacities are even then there is a maximal (s-t)-flow f such that f(e) is even for all $e \in E$.
- (b) If all capacities are odd then there is a maximal (s t)-flow f such that f(e) is odd for all $e \in E$.

Exercise G4

Let G = (V, E) be a graph. A subset $M \subseteq E$ is a matching in G if $m \cap m' = \emptyset$ for all $m, m' \in M$. A matching M is *perfect* if 2|M| = |V|.

In each of the following graphs determine a perfect matching or show that no perfect matching exists.

Let (G = (V, E), s, t, c) be a network with integral capacities $c(e) \in \mathbb{Z}_+$ for all $e \in E$. Let f be a maximal flow in this network. We assume that the capacity of one edge e

(a) is increased by 1,

Exercise H1 (5 points)

(b) is decreased by 1.

Describe an algorithm with complexity $\mathcal{O}(m+n)$ that determines a maximal flow in the new network. Improve your algorithm (or your analysis) to $\mathcal{O}(m)$.

Exercise H2 (5 points)

- (a) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called *upwards critical* if increasing the capacity of e increases the value of the maximal flow. Does every network possess an upwards critical edge? Describe an algorithm that finds all upwards critical edges and has a considerably better running time than solving m max flow problems.
- (b) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called *downwards critical* if decreasing the capacity of e decreases the value of the maximal flow. Does every network possess a downwards critical edge?

Describe an algorithm that finds all downwards critical edges and analyse its running time.

Exercise H3 (5 points)

Let G = (V, E) be an undirected graph and $s \neq t \in V$. A subset $F \subseteq E$ is (s - t)-separating if any (s - t)-path uses at least one edge of F. A collection P_1, \ldots, P_k of (s - t)-paths in G is *edge-disjoint* if no pair $P_i, P_j, i \neq j$ have an edge in common.

(a) Prove the edge version of the Theorem of Menger:

The maximal number of edge-disjoint paths in G equals the minimal size of an (s - t)-separating edge set. *Hint:* Apply the MaxFlow-MinCut Theorem to a suitable network.

(b^{*}) (Bonus exercise – no points) A subset $U \subseteq V$ is (s-t)-separating if any (s-t)-path uses at least one node of U. Two (s-t)-paths are internally disjoint if they only share the nodes s and t.

Prove the node version of the Theorem of Menger:

Assume $\{s, t\} \notin E$. Then the maximal number of internally disjoint (s - t)-paths equals the minimal size of an (s - t)-separating node set.

Hint: Construct a directed graph as above, then replace each node $v \in V \setminus \{s, t\}$ by a pair v^-, v^+ and a directed edge (v^-, v^+) . Again apply the MaxFlow-MinCut Theorem.

Exercise H4 (5 points)

Let G = (V, E) be a directed graph, $c : E \to \mathbb{R}_+$ a capacity and $f : E \to \mathbb{R}$ a flow on G. Prove or disprove the following statements:

- (a) f is maximal $\Rightarrow f(e) = 0$ or f(e) = c(e) for all $e \in E$.
- (b) There is a maximal flow such that f(e) = 0 or f(e) = c(e) for all $e \in E$.
- (c) A minimal cut is unique if all capacities are pairwise distinct.
- (d) Multiplying all capacities c(e) by a number $\lambda > 0$ does not change the minimal cuts.
- (e) Adding a number $\lambda > 0$ to all capacities c(e) does not change the minimal cuts.