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Groupwork

Exercise G1

Using the Ford-Fulkerson method, compute a maximal flow in the following network:
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Also determine a minimal cut in G.

Exercise G2

The goal of this exercise is to show that the Ford-Fulkerson method need not terminate if we allow irrational edge

capacities.

Consider the following network with capacities ce.
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Here X is some large integral constant and φ = 1
2
(
p

5− 1). (Note that φn = φn+1 +φn+2 for any n≥ 0.)

(a) Show by induction that for any integer n≥ 0 the residual capacities of the three horizontal edges can be brought

to the values φn, 0,φn+1.

(b) Conclude that Ford-Fulkerson need not terminate on this network. Does it converge?

(c) Find a network where Ford-Fulkerson converges, but not to a maximal flow.

Exercise G3

Let (G = (V, E), s, t, c) be a network with integral capacities c(e) ∈ Z for all edges e ∈ E. Prove or refute the following

assertions:

(a) If all capacities are even then there is a maximal (s− t)-flow f such that f (e) is even for all e ∈ E.

(b) If all capacities are odd then there is a maximal (s− t)-flow f such that f (e) is odd for all e ∈ E.

Exercise G4

Let G = (V, E) be a graph. A subset M ⊆ E is a matching in G if m ∩m′ = ; for all m, m′ ∈ M . A matching M is

perfect if 2|M |= |V |.
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In each of the following graphs determine a perfect matching or show that no perfect matching exists.

(a) (b) (c)

Homework

Exercise H1 (5 points)

Let (G = (V, E), s, t, c) be a network with integral capacities c(e) ∈ Z+ for all e ∈ E. Let f be a maximal flow in this

network. We assume that the capacity of one edge e

(a) is increased by 1,

(b) is decreased by 1.

Describe an algorithm with complexity O(m+ n) that determines a maximal flow in the new network. Improve your

algorithm (or your analysis) to O(m).

Exercise H2 (5 points)

(a) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called upwards critical if increasing

the capacity of e increases the value of the maximal flow. Does every network possess an upwards critical edge?

Describe an algorithm that finds all upwards critical edges and has a considerably better running time than

solving m max flow problems.

(b) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called downwards critical if decreasing

the capacity of e decreases the value of the maximal flow. Does every network possess a downwards critical

edge?

Describe an algorithm that finds all downwards critical edges and analyse its running time.

Exercise H3 (5 points)

Let G = (V, E) be an undirected graph and s 6= t ∈ V . A subset F ⊆ E is (s− t)-separating if any (s− t)-path uses at

least one edge of F . A collection P1, . . . , Pk of (s− t)-paths in G is edge-disjoint if no pair Pi , Pj , i 6= j have an edge in

common.

(a) Prove the edge version of the Theorem of Menger :

The maximal number of edge-disjoint paths in G equals the minimal size of an (s− t)-separating edge set.

Hint: Apply the MaxFlow-MinCut Theorem to a suitable network.

(b∗) (Bonus exercise – no points) A subset U ⊆ V is (s− t)-separating if any (s− t)-path uses at least one node of U .

Two (s− t)-paths are internally disjoint if they only share the nodes s and t.
Prove the node version of the Theorem of Menger :

Assume {s, t} 6∈ E. Then the maximal number of internally disjoint (s− t)-paths equals the minimal size of an

(s− t)-separating node set.

Hint: Construct a directed graph as above, then replace each node v ∈ V \ {s, t} by a pair v−, v+ and a directed

edge (v−, v+). Again apply the MaxFlow-MinCut Theorem.

Exercise H4 (5 points)

Let G = (V, E) be a directed graph, c : E→ R+ a capacity and f : E→ R a flow on G. Prove or disprove the following

statements:

(a) f is maximal ⇒ f (e) = 0 or f (e) = c(e) for all e ∈ E.

(b) There is a maximal flow such that f (e) = 0 or f (e) = c(e) for all e ∈ E.

(c) A minimal cut is unique if all capacities are pairwise distinct.

(d) Multiplying all capacities c(e) by a number λ > 0 does not change the minimal cuts.

(e) Adding a number λ > 0 to all capacities c(e) does not change the minimal cuts.
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