Algorithmic Discrete Mathematics 5. Exercise Sheet

Andreas Paffenholz
12/13 June 2013
Silke Horn

Groupwork

Exercise G1

Using the Ford-Fulkerson method, compute a maximal flow in the following network:

Also determine a minimal cut in G.

Exercise G2

The goal of this exercise is to show that the Ford-Fulkerson method need not terminate if we allow irrational edge capacities.
Consider the following network with capacities c_{e}.

Here X is some large integral constant and $\phi=\frac{1}{2}(\sqrt{5}-1)$. (Note that $\phi^{n}=\phi^{n+1}+\phi^{n+2}$ for any $n \geq 0$.)
(a) Show by induction that for any integer $n \geq 0$ the residual capacities of the three horizontal edges can be brought to the values $\phi^{n}, 0, \phi^{n+1}$.
(b) Conclude that Ford-Fulkerson need not terminate on this network. Does it converge?
(c) Find a network where Ford-Fulkerson converges, but not to a maximal flow.

Exercise G3

Let $(G=(V, E), s, t, c)$ be a network with integral capacities $c(e) \in \mathbb{Z}$ for all edges $e \in E$. Prove or refute the following assertions:
(a) If all capacities are even then there is a maximal $(s-t)$-flow f such that $f(e)$ is even for all $e \in E$.
(b) If all capacities are odd then there is a maximal $(s-t)$-flow f such that $f(e)$ is odd for all $e \in E$.

Exercise G4

Let $G=(V, E)$ be a graph. A subset $M \subseteq E$ is a matching in G if $m \cap m^{\prime}=\emptyset$ for all $m, m^{\prime} \in M$. A matching M is perfect if $2|M|=|V|$.

In each of the following graphs determine a perfect matching or show that no perfect matching exists.
(a)

(b)

(c)

Homework

Exercise H1 (5 points)
Let $(G=(V, E), s, t, c)$ be a network with integral capacities $c(e) \in \mathbb{Z}_{+}$for all $e \in E$. Let f be a maximal flow in this network. We assume that the capacity of one edge e
(a) is increased by 1 ,
(b) is decreased by 1 .

Describe an algorithm with complexity $\mathcal{O}(m+n)$ that determines a maximal flow in the new network. Improve your algorithm (or your analysis) to $\mathcal{O}(m)$.

Exercise H2 (5 points)

(a) An edge e in a network ($G=(V, E), s, t, c$) where t can be reached from s, is called upwards critical if increasing the capacity of e increases the value of the maximal flow. Does every network possess an upwards critical edge? Describe an algorithm that finds all upwards critical edges and has a considerably better running time than solving m max flow problems.
(b) An edge e in a network ($G=(V, E), s, t, c$) where t can be reached from s, is called downwards critical if decreasing the capacity of e decreases the value of the maximal flow. Does every network possess a downwards critical edge?
Describe an algorithm that finds all downwards critical edges and analyse its running time.
Exercise H3 (5 points)
Let $G=(V, E)$ be an undirected graph and $s \neq t \in V$. A subset $F \subseteq E$ is $(s-t)$-separating if any $(s-t)$-path uses at least one edge of F. A collection P_{1}, \ldots, P_{k} of $(s-t)$-paths in G is edge-disjoint if no pair $P_{i}, P_{j}, i \neq j$ have an edge in common.
(a) Prove the edge version of the Theorem of Menger:

The maximal number of edge-disjoint paths in G equals the minimal size of an $(s-t)$-separating edge set.
Hint: Apply the MaxFlow-MinCut Theorem to a suitable network.
(b*) (Bonus exercise - no points) A subset $U \subseteq V$ is $(s-t)$-separating if any $(s-t)$-path uses at least one node of U. Two $(s-t)$-paths are internally disjoint if they only share the nodes s and t.
Prove the node version of the Theorem of Menger:
Assume $\{s, t\} \notin E$. Then the maximal number of internally disjoint $(s-t)$-paths equals the minimal size of an ($s-t$)-separating node set.
Hint: Construct a directed graph as above, then replace each node $v \in V \backslash\{s, t\}$ by a pair v^{-}, v^{+}and a directed edge (ν^{-}, v^{+}). Again apply the MaxFlow-MinCut Theorem.

Exercise H4 (5 points)
Let $G=(V, E)$ be a directed graph, $c: E \rightarrow \mathbb{R}_{+}$a capacity and $f: E \rightarrow \mathbb{R}$ a flow on G. Prove or disprove the following statements:
(a) f is maximal $\Rightarrow f(e)=0$ or $f(e)=c(e)$ for all $e \in E$.
(b) There is a maximal flow such that $f(e)=0$ or $f(e)=c(e)$ for all $e \in E$.
(c) A minimal cut is unique if all capacities are pairwise distinct.
(d) Multiplying all capacities $c(e)$ by a number $\lambda>0$ does not change the minimal cuts.
(e) Adding a number $\lambda>0$ to all capacities $c(e)$ does not change the minimal cuts.

