Algorithmic Discrete Mathematics 3. Exercise Sheet

Groupwork

Exercise G1

A spanning forest for a graph $G=(V, E)$ with $c(G)$ connected components is a forest $T=(V, F)$ with $F \subseteq E$ and $|F|=|V|-c(G)$. In particular, a spanning forest of a connected graph is a spanning tree.

Generalize the breadth-first-search algorithm so that it computes a spanning forest of a not necessarily connected graph. Also determine the running time.

Exercise G2

Reconsider the depth-first-search algorithm presented in the lecture:

```
Algorithm 2: Depth-First-Search (DFS)
    Input: graph \(G=(V, E), V=\{1, \ldots, n\}\) given as adjacency list
    Output: predecessor function pred : \(V \rightarrow V \cup\{0\}\)
    foreach \(v \in V\) do
        \(\operatorname{pred}(\nu) \leftarrow 0\)
        \(\operatorname{seen}(v) \leftarrow 0\)
    foreach \(v \in V\) do
        if \(\operatorname{seen}(v)=0\) then
            \(\operatorname{DFSvisit}(G, v)\)
    Function DFSvisit(G,r)
    Input: graph \(G=(V, E)\) given as adjacency list, root node \(r \in V\)
    \(\operatorname{seen}(r) \leftarrow 1\)
    foreach \(v \in \operatorname{Adj}(r)\) do
        if \(\operatorname{seen}(v)=0\) then
            \(\operatorname{pred}(\nu)=r\)
            \(\operatorname{DFSvisit}(G, v)\)
```

Show that the algorithm correctly computes a spanning forest and determine its running time.

Exercise G3

Recall Kruskal's algorithm:

```
Algorithm 3: Kruskal's Algorithm
    Input: graph \(G=(V, E)\), weight function \(w: E \rightarrow \mathbb{R}\)
    Output: Minimal spanning tree \(T=(V, F)\) of \(G\)
    \(F \leftarrow \emptyset\)
    \(L \leftarrow E\)
    Sort the edges in \(L\) increasingly by weight
    while \(L \neq \emptyset\) do
        \(e \leftarrow\) pop_front \((L)\)
        if \((V, F \cup\{e\})\) is acyclic then
            \(F \leftarrow F \cup\{e\}\)
```

The goal of this exercise is to show that the loop in lines $4-7$ can be implemented so that it runs in time $\mathcal{O}(m \log n)$.

To this end, we have to verify whether inserting the edge e in step 6 encloses a cycle. We will at each step keep track of the connected components of the forest. We define a function find :V $\rightarrow V$ that maps a vertex to some unique representative of its connected component. It then suffices to check whether the two endpoints of $e=\{u, v\}$ are in the same component, i.e., e encloses a cycle if and only if find $(u)=\operatorname{find}(v)$.

If we add e to the forest, we have to form the union of the two connected components containing u and v. To this end, we need a function union that forms the union.
(a) Describe an easy $\mathcal{O}(n)$ implementation of find and union.
(b) We can do faster if we arrange the elements of each connected component in a rooted tree with the representative in the root. Describe the details of such an implementation and show that find (ν) and union (u, v) run in $\mathcal{O}(\log n)$ time.
(c) Conclude that the loop in lines $4-7$ runs in time $\mathcal{O}(m \log n)$.
(d) Can you think of even more improvements?

Exercise G4

Let $G=(V, E)$ be a d-regular graph on n vertices, i.e., each vertex $v \in V$ has degree d. Show that the total number of triangles in G and \bar{G} equals $\binom{n}{3}-\frac{n}{2} d(n-d-1$). (Recall that the complementary graph \bar{G} of G is defined as $\bar{G}=\left(V,\binom{V}{2} \backslash E\right)$.

Homework

Exercise H1 (5 points)
Perform
(a) the BFS algorithm and
(b) the DFS algorithm
on the following graph with root node $s=1$:

Always go through the vertices in the adjacency list in increasing order. Determine the values of pred, seen and L (only for BFS) in each step. Moreover, give the spanning tree that is constructed.

Exercise H2 (5 points)
(a) Perform Kruskal's algorithm on the following graph:

You can use the template on the website for the drawings of the graph.
(b) Prove: If the weights of the edges are pairwise distinct then the minimal spanning tree is unique.

Exercise H3 (5 points)

Let T be a minimal spanning tree in a graph $G=(V, E)$.
(a) Let $\{i, j\} \in E$. Describe an algorithm that finds a minimal spanning tree in the graph $G_{1}=(V, E \backslash\{\{i, j\}\})$ obtained by deleting the edge $\{i, j\}$.
(b) Let $\{k, \ell\} \notin E$. Describe an algorithm that finds a minimal spanning tree in the new graph $G_{2}=(V, E \cup\{\{k, \ell\}\})$ obtained by adding the edge $\{k, \ell\}$.

In both cases show that your algorithm is correct and determine its running time.
Exercise H4 (5 points)
A tournament $T=(V, A)$ is a directed graph in which there is exactly one edge between any two vertices. Show that in every tournament there is a vertex v such that there is a path of length ≤ 2 from v to any other vertex.

