
Algorithmic Discrete Mathematics
3. Exercise Sheet

Department of Mathematics SS 2013
Andreas Paffenholz 15/16 May 2013
Silke Horn

Groupwork

Exercise G1

A spanning forest for a graph G = (V, E) with c(G) connected components is a forest T = (V, F) with F ⊆ E and

|F |= |V | − c(G). In particular, a spanning forest of a connected graph is a spanning tree.

Generalize the breadth-first-search algorithm so that it computes a spanning forest of a not necessarily connected

graph. Also determine the running time.

Exercise G2

Reconsider the depth-first-search algorithm presented in the lecture:

Algorithm 2: Depth-First-Search (DFS)

Input: graph G = (V, E), V = {1, . . . , n} given as adjacency list

Output: predecessor function pred : V → V ∪ {0}
1 foreach v ∈ V do

2 pred(v)← 0
3 seen(v)← 0
4 foreach v ∈ V do

5 if seen(v) = 0 then

6 DFSvisit(G, v)

Function DFSvisit(G,r)

Input: graph G = (V, E) given as adjacency list, root node r ∈ V
1 seen(r)← 1
2 foreach v ∈ Adj(r) do
3 if seen(v) = 0 then

4 pred(v) = r
5 DFSvisit(G, v)

Show that the algorithm correctly computes a spanning forest and determine its running time.

Exercise G3

Recall Kruskal’s algorithm:

Algorithm 3: Kruskal’s Algorithm

Input: graph G = (V, E), weight function w : E→ R
Output: Minimal spanning tree T = (V, F) of G

1 F ← ;
2 L← E
3 Sort the edges in L increasingly by weight

4 while L 6= ; do
5 e← pop front(L)
6 if (V, F ∪ {e}) is acyclic then

7 F ← F ∪ {e}

The goal of this exercise is to show that the loop in lines 4–7 can be implemented so that it runs in time O(m log n).

1

To this end, we have to verify whether inserting the edge e in step 6 encloses a cycle. We will at each step keep

track of the connected components of the forest. We define a function find : V → V that maps a vertex to some unique

representative of its connected component. It then suffices to check whether the two endpoints of e = {u, v } are in the

same component, i.e., e encloses a cycle if and only if find(u) = find(v).
If we add e to the forest, we have to form the union of the two connected components containing u and v . To this

end, we need a function union that forms the union.

(a) Describe an easy O(n) implementation of find and union.

(b) We can do faster if we arrange the elements of each connected component in a rooted tree with the representative

in the root. Describe the details of such an implementation and show that find(v) and union(u, v) run in O(log n)
time.

(c) Conclude that the loop in lines 4–7 runs in time O(m log n).

(d) Can you think of even more improvements?

Exercise G4

Let G = (V, E) be a d-regular graph on n vertices, i.e., each vertex v ∈ V has degree d. Show that the total number

of triangles in G and G equals
�n

3

�

− n
2
d(n − d − 1). (Recall that the complementary graph G of G is defined as

G = (V,
�V

2

�

\ E).)

Homework

Exercise H1 (5 points)

Perform

(a) the BFS algorithm and

(b) the DFS algorithm

on the following graph with root node s = 1:

1

2

3 4

5

6

Always go through the vertices in the adjacency list in increasing order. Determine the values of pred, seen and L
(only for BFS) in each step. Moreover, give the spanning tree that is constructed.

Exercise H2 (5 points)

(a) Perform Kruskal’s algorithm on the following graph:

A

B

C D

E

F G

H

I K

2
4

3

4

10

4

4 5

2

4

7

3

3

3

6

3

2

4

You can use the template on the website for the drawings of the graph.

(b) Prove: If the weights of the edges are pairwise distinct then the minimal spanning tree is unique.

2

Exercise H3 (5 points)

Let T be a minimal spanning tree in a graph G = (V, E).

(a) Let {i, j} ∈ E. Describe an algorithm that finds a minimal spanning tree in the graph G1 = (V, E \ {{i, j}})
obtained by deleting the edge {i, j}.

(b) Let {k,`} 6∈ E. Describe an algorithm that finds a minimal spanning tree in the new graph G2 = (V, E ∪ {{k,`}})
obtained by adding the edge {k,`}.

In both cases show that your algorithm is correct and determine its running time.

Exercise H4 (5 points)

A tournament T = (V, A) is a directed graph in which there is exactly one edge between any two vertices. Show that

in every tournament there is a vertex v such that there is a path of length ≤ 2 from v to any other vertex.

3

