Algorithmic Discrete Mathematics 2. Exercise Sheet

Department of Mathematics
SS 2013
Andreas Paffenholz 2 May 2013
Silke Horn

Groupwork

Exercise G1

(a) Show that every tree T has at least $\Delta(T)$ leaves.
(b) Show that a tree without a vertex of degree 2 has more leaves than other vertices.

Exercise G2

Recall that an automorphism of a graph $G=(V, E)$ is a bijective map $\phi: V \rightarrow V$ such that $\{u, v\} \in E \Leftrightarrow\{\phi(u), \phi(v)\} \in$ E for any $u, v \in V$.
Show that every automorphism of a tree fixes a vertex or an edge.

Exercise G3

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $g \in \Omega(f)$. Assume that two algorithms are given:

- Algorithm A has a running time of $\mathcal{O}(f)$.
- Algorithm B has a running time of $\mathcal{O}(g)$.

Consider the following two algorithms:

```
Algorithm 1:
    Input: \(n \in \mathbb{N}\)
    \(s \leftarrow 0\)
    for \(i=0, \ldots, 100\) do
        Run Algorithm \(A\)
    for \(i=0, \ldots, 2 n\) do
        Run Algorithm B
```

Estimate the running times as accurately as possible.

Exercise G4

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be two functions and a a constant. Prove:
(a) $f \in \mathcal{O}(f)$
(b) $a \cdot \mathcal{O}(f) \subseteq \mathcal{O}(f)$
(c) $\mathcal{O}(f)+\mathcal{O}(f) \subseteq \mathcal{O}(f)$
(d) $\mathcal{O}(f) \cdot \mathcal{O}(g) \subseteq \mathcal{O}(f g)$
(e) $f \cdot \mathcal{O}(g) \subseteq \mathcal{O}(f g)$
(f) $\max (f, g) \in \Theta(f+g)$

Hint: For two sets A, B addition and multiplication are defined point-wise, e.g. for $A=\{a, b\}$ and $B=\{c, d\}$: $A+B=\{a+c, a+d, b+c, b+d\}, A \cdot B=\{a c, a d, b c, b d\}$.

Homework

Exercise H1 (5 points)

Recall that a subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ with $W \subseteq V, F \subseteq E . H$ is induced if $F=E \cap\binom{W}{2}$.
Assume that a graph $G=(V, E)$ with $|V|=n$ and $|E| \geq 3$ without isolated vertices does not have an induced subgraph with two edges. Show that $G=K_{n}, n \geq 3$, i.e., G is a complete graph on n vertices.

Exercise H2 (5 points)
Sort the functions

$$
n, \quad n^{3}, \quad \sqrt{n}, \quad n!, \quad 2^{n}, \quad n^{n}
$$

according to their complexity in ascending order using o-notation.
Reminder:

$$
f \in o(g) \Longleftrightarrow \forall c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: 0 \leq f(n)<c g(n)
$$

Exercise H3 (5 points)
Consider the following algorithm:

Algorithm 3:
Input: $n \in \mathbb{N}$
$d \leftarrow 2$
$q \leftarrow n$
while $q>d$ do
$q \leftarrow n / d$
if $\lceil q\rceil=q$ then
return d
else
$d \leftarrow d+1$
return 0

What does it do? Estimate its running time.
Exercise H4 (5 points)
Let $G=(V, E)$ be a connected Eulerian graph. Devise an algorithm that returns an Eulerian tour in G, prove its correctness and estimate its running time in \mathcal{O}-notation.

Optimierung sucht HiWis:

