Algorithmic Discrete Mathematics 2. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

SS 2013

2 May 2013

Department of Mathematics Andreas Paffenholz Silke Horn

Groupwork

Exercise G1

- (a) Show that every tree T has at least $\Delta(T)$ leaves.
- (b) Show that a tree without a vertex of degree 2 has more leaves than other vertices.

Exercise G2

Recall that an automorphism of a graph G = (V, E) is a bijective map $\phi : V \to V$ such that $\{u, v\} \in E \Leftrightarrow \{\phi(u), \phi(v)\} \in E$ for any $u, v \in V$.

Show that every automorphism of a tree fixes a vertex or an edge.

Exercise G3

Let $f, g: \mathbb{N} \to \mathbb{N}$ be two functions such that $g \in \Omega(f)$. Assume that two algorithms are given:

- Algorithm A has a running time of $\mathcal{O}(f)$.
- Algorithm B has a running time of $\mathcal{O}(g)$.

Consider the following two algorithms:

Algorithm 1:	Algorithm 2
Input: $n \in \mathbb{N}$ $s \leftarrow 0$ for $i = 0,, 100$ do Run Algorithm A for $i = 0,, 2n$ do Dun Algorithm B	

Estimate the running times as accurately as possible.

Exercise G4

Let $f,g:\mathbb{N}\to\mathbb{N}$ be two functions and a a constant. Prove:

(a) $f \in \mathcal{O}(f)$

- (b) $a \cdot \mathcal{O}(f) \subseteq \mathcal{O}(f)$
- (c) $\mathcal{O}(f) + \mathcal{O}(f) \subseteq \mathcal{O}(f)$
- (d) $\mathcal{O}(f) \cdot \mathcal{O}(g) \subseteq \mathcal{O}(fg)$

(e)
$$f \cdot \mathcal{O}(g) \subseteq \mathcal{O}(fg)$$

(f)
$$\max(f,g) \in \Theta(f+g)$$

Hint: For two sets A, B addition and multiplication are defined point-wise, e.g. for $A = \{a, b\}$ and $B = \{c, d\}$: $A + B = \{a + c, a + d, b + c, b + d\}, A \cdot B = \{ac, ad, bc, bd\}.$

Homework

Exercise H1 (5 points)

Recall that a subgraph of a graph G = (V, E) is a graph H = (W, F) with $W \subseteq V, F \subseteq E$. H is induced if $F = E \cap {\binom{W}{2}}$. Assume that a graph G = (V, E) with |V| = n and $|E| \ge 3$ without isolated vertices does not have an induced subgraph with two edges. Show that $G = K_n, n \ge 3$, *i.e.*, G is a complete graph on n vertices.

Exercise H2 (5 points) Sort the functions

 $n, n^3, \sqrt{n}, n!, 2^n, n^n$

according to their complexity in ascending order using o-notation. *Reminder:*

$$f \in o(g) \iff \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 0 \le f(n) < cg(n)$$

Exercise H3 (5 points)

Consider the following algorithm:

Algorithm 3:
Input: $n \in \mathbb{N}$
$d \leftarrow 2$
$q \leftarrow n$
while $q > d$ do
$q \leftarrow n/d$
$\mathbf{if} \ \left\lceil q \right\rceil = q \ \mathbf{then}$
return d
else
$d \leftarrow d + 1$
return 0

What does it do? Estimate its running time.

Exercise H4 (5 points)

Let G = (V, E) be a connected Eulerian graph. Devise an algorithm that returns an Eulerian tour in G, prove its correctness and estimate its running time in \mathcal{O} -notation.

Optimierung sucht HiWis:

http://www3.mathematik.tu-darmstadt.de/hp/optimierung/mars-sonja/optimierung-sucht-hilfskraefte.html