Algorithmic Discrete Mathematics 1. Exercise Sheet

Groupwork

Exercise G1

Show that a graph $G=(V, E)$ is bipartite if and only if it does not contain cycles of odd length.

Exercise G2

Let $G=(V, E)$ be a graph. Prove:
(a) Any walk with distinct endpoints v, w contains a path between v and w.
(b) Any closed walk contains a cycle.

Exercise G3

A walk in a connected graph $G=(V, E)$ is called an Eulerian trail if it contains each edge of G exactly once. A closed Eulerian trail is called an Eulerian tour. The graph G is called Eulerian if it contains an Eulerian tour.
(a) Which of the graphs in Figure 1 are Eulerian.
(b) Let G be a connected graph. State conditions for G to be Eulerian and prove that these conditions are necessary.
(c) Are these conditions also sufficient?

Figure 1: Eulerian or not?

Homework

Exercise H1 (5 points)
Show: In any graph with at least two vertices, there are at least two vertices with the same degree.
Exercise H2 (5 points)
For a graph $G=(V, E)$, the graph $\bar{G}=\left(V,\binom{V}{2} \backslash E\right)$ is called the complementary graph of G. Two vertices are adjacent
in \bar{G} if and only if they are not adjacent in G.
Show: One of G and \bar{G} is connected.
Exercise H3 (10 points)
Show that for a graph $G=(V, E)$ with $n \geq 2$ vertices the following are equivalent:
(i) G is a tree.
(ii) G is connected and contains $n-1$ edges.
(iii) G contains $n-1$ edges, but no cycle.
(iv) G is minimally connected, i.e., G is connected but $G-e$ is not connected for any $e \in E$.
(v) G is maximally acyclic, i.e., G is acyclic but $G+e$ contains a cycle for any $e \in\binom{V}{2} \backslash E$.
(vi) For each pair $u, v \in V$ of vertices, there is a unique $[u, v]$-path in G.

