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Groupwork

Exercise G1

Using the Ford-Fulkerson method, compute a maximal flow in the following network:
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Also determine a minimal cut in G.

Solution: The following showas a maximal flow and a minimal cut of value 19:
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Exercise G2

The goal of this exercise is to show that the Ford-Fulkerson method need not terminate if we allow irrational edge

capacities.

Consider the following network with capacities ce.
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Here X is some large integral constant and φ = 1
2
(
p

5− 1). (Note that φn = φn+1 +φn+2 for any n≥ 0.)
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(a) Show by induction that for any integer n≥ 0 the residual capacities of the three horizontal edges can be brought

to the values φn, 0,φn+1.

(b) Conclude that Ford-Fulkerson need not terminate on this network. Does it converge?

(c) Find a network where Ford-Fulkerson converges, but not to a maximal flow.

Solution:

(a) In the following we always consider the residual capacities of the three horizontal edges (in the direction of the

edge). In the beginning they are 1,1,φ.

First choose the following path and increase the flow by 1:
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Now the residual capacities are 1,0,φ. So now assume that the capacities are φn−1, 0,φn for some n≥ 1.

By increasing the flow along the following three paths, the capacities become φn+1, 0,φn+2:
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(1) Augmenting along the path B, adding φn to the flow, the residual capacities are φn+1,φn, 0.

(2) Augmenting along the path C , adding φn to the flow, the residual capacities are φn+1, 0,φn.

(3) Augmenting along the path B, adding φn+1 to the flow, the residual capacities are 0,φn+1,φn+2.

(4) Augmenting along the path A, adding φn+1 to the flow, the residual capacities are φn+1, 0,φn+2.

(b) If we choose the augmenting paths as above, the residual capacities of the horizontal edges will never reach 0
and we can always find another augmenting path.

The flow value converges to

1+ 2
∞
∑

n=1

φ i = 1+
2

1−φ
< 7.

The maximal flow value, however, is 2X + 1.

In general the flow value does always converge since the sequence of flow values is monotone and bounded.

(c) See above.

Exercise G3

Let (G = (V, E), s, t, c) be a network with integral capacities c(e) ∈ Z for all edges e ∈ E. Prove or refute the following

assertions:

(a) If all capacities are even then there is a maximal (s− t)-flow f such that f (e) is even for all e ∈ E.

(b) If all capacities are odd then there is a maximal (s− t)-flow f such that f (e) is odd for all e ∈ E.

Solution:

(a) One can divide all capacities by 2. On the modified graph there is an integral maximal flow. If we multiply this

by 2 we get an even maximal flow on the original graph.

Alternatively, one can replace “integral” by “even” in the proof that Ford-Fulkerson is correct for integral edge

weights.
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(b) Counter example:
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Exercise G4

Let G = (V, E) be a graph. A subset M ⊆ E is a matching in G if m ∩m′ = ; for all m, m′ ∈ M . A matching M is

perfect if 2|M |= |V |.
In each of the following graphs determine a perfect matching or show that no perfect matching exists.

(a) (b) (c)

Solution:
(a) (c)

For the graph in (b) there is no perfect matching.

Homework

Exercise H1 (5 points)

Let (G = (V, E), s, t, c) be a network with integral capacities c(e) ∈ Z+ for all e ∈ E. Let f be a maximal integral flow

in this network. We assume that the capacity of one edge e

(a) is increased by 1,

(b) is decreased by 1.

Describe an algorithm with complexity O(m+ n) that determines a maximal flow in the new network. Improve your

algorithm (or your analysis) to O(m).
Solution: First we note that in a connected graph |E| ≥ |V | − 1 and hence both DFS and BFS run in time O(m). If

the graph is not connected we only consider one connected component (the one with the source).

(a) If the capacity of one edge is increased by one, one only needs to look for an augmenting path exactly once since

the value of the maximal flow can be increased by at most one. This can be done by BFS in time O(m).
(b) If the capacity of one edge is decreased by one, there are two cases:

i. The maximal flow through this edge remains feasible: In this case there is nothing to do.

ii. The flow in the edge exceeds its capacity by exactly one: Let (u, v ) be the edge; we search for a path p1
from s to u and a path p2 from v to t. These two paths shall be disjoint and only contain edges with

positive flow. By flow composition these paths exist or there is a cycle with positive flow. We can use BFS

3



to determine p1 and p2 in time O(m). If p1(u, v )p2 contains a cycle, we reduce the flow along this cycle by

one to obtain a feasible (and maximal) flow.

Otherwise we reduce the flow along the path p1(u, v )p2 by one to obtain a feasible flow. Now we have to

check whether we can increase the flow by one (along a different path). Thus, we look for an augmenting

path and if applicable increase the flow along this path by one. Since this is also possible in time O(m) we

obtain a total running time of O(m).

Exercise H2 (5 points)

(a) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called upwards critical if increasing

the capacity of e increases the value of the maximal flow. Does every network possess an upwards critical edge?

Describe an algorithm that finds all upwards critical edges and has a considerably better running time than

solving m max flow problems.

(b) An edge e in a network (G = (V, E), s, t, c) where t can be reached from s, is called downwards critical if decreasing

the capacity of e decreases the value of the maximal flow. Does every network possess a downwards critical

edge?

Describe an algorithm that finds all downwards critical edges and analyse its running time.

Solution:

(a) Not every graph possesses an upwards critical edge. Consider for instance a path of length ≥ 2 where every edge

has equal capacity.

We first compute a maximal flow in our network. Then, with exercise H1 (a) above, the problem of finding all

upwards critical edges can be solved in time O(m2) (by running the algorithm described above for every edge).

Here is another way:

An edge is upwards critical if and only if it is contained in every minimal cut.

Let f be a maximal flow. Let S be the set of nodes that can be reached from s in G f and let T be the set of

nodes from which t can be reached in G f . Then the set of upwards critical edges equals δ+(S)∩δ–(T ).
The sets S and T , respectively δ+(S) and δ–(T ) can be determined in time O(m) (e.g. using BFS or enumeration).

Since δ+(S) and δ–(T ) are of cardinality O(m) their intersection can easily be determined in O(m2). By sorting

the lists (with an appropriate sorting algorithm) we can do this in O(m log m) or even in O(n2) (which needs

some more work).

(b) An edge is downwards critical if and only if it is contained in some minimal cut. Hence every graph with positive

maximal flow possesses a downwards critical edge and the set of downwards critical edges need not equal the

set of upwards critical edges.

Again, we need to compute a maximal flow in the network. Then, with exercise H1 (b) above, the problem of

finding all downwards critical edges can be solved in time O(m2).

Exercise H3 (5 points)

Let G = (V, E) be an undirected graph and s 6= t ∈ V . A subset F ⊆ E is (s− t)-separating if any (s− t)-path uses at

least one edge of F . A collection P1, . . . , Pk of (s− t)-paths in G is edge-disjoint if no pair Pi , Pj , i 6= j have an edge in

common.

(a) Prove the edge version of the Theorem of Menger :

The maximal number of edge-disjoint paths in G equals the minimal size of an (s− t)-separating edge set.

Hint: Apply the MaxFlow-MinCut Theorem to a suitable network.

(b∗) (Bonus exercise – no points) A subset U ⊆ V is (s− t)-separating if any (s− t)-path uses at least one node of U .

Two (s− t)-paths are internally disjoint if they only share the nodes s and t.

Prove the node version of the Theorem of Menger :

Assume {s, t} 6∈ E. Then the maximal number of internally disjoint (s− t)-paths equals the minimal size of an

(s− t)-separating node set.

Hint: Construct a directed graph as above, then replace each node v ∈ V \ {s, t} by a pair v−, v+ and a directed

edge (v−, v+). Again apply the MaxFlow-MinCut Theorem.

Solution:
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(a) It is clear that the number of edge-disjoint paths is less than or equal to the size of any (s− t)-separating set

since each (s− t)-path uses at least one edge from every (s− t)-separating set.

For the reverse inequality we construct a network with a directed graph D = (V, A) by:

uv ∈ A⇔ {u, v } ∈ E and

(1) u= s or

(2) v = t or

(3) {u, v } ∩ {s, t}= ;.

Moreover, we define the capacity c : A→ R : c(a) = 1 for all a ∈ A. Then any (s− t)-cut and hence any maximal

flow in D are integral. Thus, we have an integral path decomposition and each edge appears in at most one

path.

On the other hand, any (s− t)-cut in D defines an (s− t)-separating set in G of the same size. Moreover, any

integral flow yields a flow decomposition with at least as many paths as the flow value. Hence we get

max number of edge-disjoint (s− t)-paths≥max flow=min cut≥min (s− t)-separating set.

(b) Again, it is clear that the number of internally disjoint paths is less than or equal to the size of any (s − t)-
separating set.

For the reverse inequality we again construct a network with a directed graph (V ′, A). We start with the directed

graph as above. Then we replace every vertex v ∈ V \ {s, t} by a pair v−, v+ and a directed edge (v−, v+).
Moreover, we replace each edge (u, v ) ∈ δ–(v ) by an edge (u, v−) and each edge (v , u) ∈ δ+(v ) by an edge

(v+, u). Again we define the capacity c : A→ R≥0 : c(a) = 1 for each a ∈ A.

We can now assume that a minimal (s − t)-cut consists only of edges of the form (v−, v+). In fact, assume

that a minimal cut P = (S, T ) contains an edge (u+, v−) with u+ ∈ S, v− ∈ T − {t}. Now consider the cut

P ′ = (S ∪ {v−}, T − {v−}). Then EP′ ⊆ EP ∪ {(v−, v+)} − {(u+, v−} and hence c(P ′)≤ c(P).
Such a cut, however, corresponds to an (s− t)-separating node set of the same size.

The remainder of the proof is analogous to the edge version. Hence we get

max number of internally disjoint (s− t)-paths≥max flow=min cut≥min (s− t)-separating set.

Exercise H4 (5 points)

Let G = (V, E) be a directed graph, c : E→ R≥0 a capacity and f : E→ R a flow on G. Prove or disprove the following

statements:

(a) f is maximal ⇒ f (e) = 0 or f (e) = c(e) for all e ∈ E.

(b) There is a maximal flow such that f (e) = 0 or f (e) = c(e) for all e ∈ E.

(c) A minimal cut is unique if all capacities are pairwise distinct.

(d) Multiplying all capacities c(e) by a number λ > 0 does not change the minimal cuts.

(e) Adding a number λ > 0 to all capacities c(e) does not change the minimal cuts.

Solution:

(a) False, counter example:

s 1 t
1 2

(b) False, see (a) for a counter example.

(c) False, counter example: Consider the following graph:
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The value of a maximal (s, t)-flow (and hence the capacity of a minimal (s, t)-cut) is 5, as demonstrated by the

following flow:

s

1

2

3

4

t

1

4

1

3

2

3

01

The cuts ({s}, {1,2, 3,4, t}) and ({t}, {1, 2,3, 4, s}) both have capacity 5.

(d) True. Let P be a minimal cut in a graph G. Then cP ≤ cP′ for any cut P ′ in G. But this is equivalent to

λcP ≤ λcP′ for any scalar λ > 0.

(e) False, counter example: Consider the following graph:
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A minimal cut of value 2 is formed by ({s}, {1,2, 3, t}). After adding λ= 2 to all capacities, the (unique) minimal

cut of value 5 is formed by ({t}, {s, 1, 2, 3}), while the value of the cut ({s}, {1, 2,3, t}) is 6.
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