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Andreas Paffenholz 31 May 2013
Silke Horn

Due to the holiday on Thursday, this week’s exercise will take place on

Friday, 13:30 in S1|03 123.

In addition, the Wednesday group will meet as usual. But participants of the Wednesday group are encouraged to

also come on Friday since there will be a short discussion on Prim’s algorithm in the beginning.

Groupwork

Exercise G1

Prim’s algorithm is another algorithm to compute a minimal spanning tree. It starts with some root node r and then

successively builds up a tree by adding a minimal edge connected to the partial tree constructed so far.

The algorithm will be presented in the exercise on 31 May 2013.

The pseudocode is as follows:

Algorithm 1: Prim’s Algorithm

Input: connected graph G = (V, E) given as adjacency list, weight function

w : E→ R, root node r ∈ V
Output: minimal spanning tree T = (V, {(v , pred(v )) | v ∈ V \ {r}}) of G

1 foreach v ∈ V do

2 pred(v )← 0
3 dist(v )←∞ // distance from tree

4 Q← V // priority queue

5 dist(r)← 0
6 while Q 6= ; do
7 v ← extract min(Q) // vertex with minimal distance

8 foreach u ∈ Adj(v ) do
9 if u ∈Q and w(u, v )< dist(u) then

10 pred(u)← v
11 dist(u)← w(u, v )

(a) Perform Prim’s algorithm on the following graph (starting at node A):
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(b) Prove that Prim’s Algorithm correctly computes a minimal spanning tree.

Solution:

(a) We start at node A; if there are several edges of the same weight we choose the one with smaller node number.

Iteration 1: Iteration 2:
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Iteration 3: Iteration 4:
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Iteration 5: Iteration 6:
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Iteration 7: Iteration 8:
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Iteration 9: Solution:
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weight of the spanning tree: 26

(b) We have to show that the output T of Prim’s Algorithm is connected, acyclic and minimal:

Connected: T is connected by the same argument we used for Kruskal’s Algorithm.

Acyclic: There is no cycle since we always connect a node of the partial tree to a previously isolated node.

Minimal: Suppose there is a spanning tree T ′ of smaller weight than T . Let e = {u, v } be the first edge of T
that is added by Prim’s Algorithm and is not contained in T ′. Let S denote the set of nodes connected by edges

that are added before e. We can without loss of generality assume that u ∈ S, v 6∈ S. Since T ′ is a spanning

tree, it contains a path from u to v . Let e′ be the first edge on this path that connects a vertex in S to a vertex

not in S. Now in Prim’s Algorithm when e is added we could also have added e′. Since we chose e with dist(e)
minimal, this implies that w(e) = w(e′). We can thus replace e by e′ to obtain another spanning tree of the

weight as T . By iterating this process we see that T has the same weight as T ′.

Exercise G2

A directed graph is called strongly connected if there is a path from each vertex to every other vertex. It is called

weakly connected if the underlying undirected graph is connected.

The strongly connected components (strong components) of a directed graph are its maximal strongly connected

subgraphs.

(a) Determine the strong components of the following graph.

1 2 3

4 5 6

7 8 9

(b) Can you redirect some of the edges so that the graph becomes strongly connected?

(c) Show that a directed graph is acyclic, i.e., it does not contain any directed cycle, if and only if all strong

components consist of only one vertex. (Note that cycles in directed graphs may consists of only two nodes.)
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Solution:

(a) The strong components are {8}, {1,2, 4,5}, {7}, {3,6, 9}.
(b) By redirecting the edges (2,3) and (8,9) we obtain:

1 2 3

4 5 6

7 8 9

This is strongly connected.

(c) First assume that there are two nodes u, v in the same strong component. Then there are directed paths p from

u to v and p′ from v to u. But then (p, p′) contains a directed cycle.

Conversely, assume that there is some directed cycle. Then all nodes in the cycle are contained in the same

strong component.

Exercise G3

A bridge in an undirected graph G = (V, E) is an edge e such that G − e has more connected components than G.

Prove that a graph in which every vertex has even degree does not have a bridge.

Solution: First solution: If every vertex had even degree, then removing the bridge would create exactly two vertices

of odd degree in two different connected components of G. This contradicts the fact that every connected component

has an even number of vertices with odd degree.

Second solution: If every vertex has even degree, then the connected component of e = {u, v } contains an Eulerian

trail. Hence there is another path from u to v .

Exercise G4

Two graphs are called isomorphic (G ∼= H) if there is a bijective map between their vertex sets that preserves adjacency.

Recall that the complementary graph G of a graph G = (V, E) is defined as G = (V,
�V

2

�

\ E). If G ∼= G then we say that

G is self-complementary. Prove: Every self-complementary graph has 4k or 4k+ 1 vertices for some k ∈ N.

Solution: A self-complementary graph has 1
2

�n
2

�

= n(n−1)
4

edges. This should be integral.

Homework

Exercise H1 (5 points)

(a) Consider the following graph:
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Using Dijkstra’s Algorithm compute a shortest path from r = 1 to all other nodes and determine the shortest

path tree.

(b) Is the shortest path tree for any given graph and root node unique?

(c) Show by an example that Dijsktra’s Algorithm does not work correctly for negative edge weights.
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Solution:

(a) The labels are [pred(v ), d(v )]. The vertices in Q are gray.
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(b) No, in general the tree is not unique; consider the following counter-example:
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graph one shortest path tree another shortest path tree

(c) This is a counter-example:
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graph G = (V, E) output of Dijkstra correct shortest path tree
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Exercise H2 (5 points)

(a) Consider the following graph:
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Using the Algorithm of Bellman-Ford compute a shortest path from r = 1 to all other nodes. In each step

specify the order in which you process the edges. Also draw the shortest path tree.

(b) Is the shortest path tree of a graph a minimal spanning tree (of the underlying undirected graph)?

Solution:

(a) We always go through the edges in lexicographical order.

The steps of the algorithm are as follows:

i 1 2 3 4 5 6 7

Init (0, 0) (∞, 0) (∞, 0) (∞, 0) (∞, 0) (∞, 0) (∞, 0)
1 (2,1) (5,1)
2 (7, 7) (0,7) (−1, 6)
3 (9, 3) (4, 4) (9,4)
4 (6, 4)

After that there will be no more changes.

The shortest path tree looks as follows:
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(b) No, in this case a minimal spanning tree could look as follows:
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This has smaller weight.

Exercise H3 (5 points)

Let G = (V, E) be a connected undirected graph and T = (V, E(T )) a spanning tree of G. A swap is a pair (e, f ) of

edges with e ∈ E(T ), f 6∈ E(T ) such that T ′ = T − e+ f is a spanning tree.

(a) Can any spanning tree of G be transformed into any other spanning tree via a finite sequence of swaps?

(b) What is the maximal number of swaps needed for this?
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Solution:

(a) Yes, see (b).

(b) We need at most |V | − 1 swaps. To this end, let T, T ′ be two spanning trees with edges E(T ), E(T ′). Let

E1 = E(T ) \ E(T ′) = {e1, . . . , ek} and E2 = E(T ′) \ E(T ) = {e′1, . . . , e′
k′
}. Then |E1|= |E2|; in particular, k = k′.

If we add e′1 to T we create exactly one cycle C in T + e′1. Then there is some edge e ∈ C ∩ E1. (Otherwise C
would be contained in T ′.) So we obtain a swap (e, e′1). By iterating this we get a sequence of k swaps that

transform T into T ′. Since k ≤ |V | − 1, this proves the claim.

Exercise H4 (5 points)

(a) Let G be a graph with n≥ 2 vertices and m>
�n−1

2

�

edges. Show that G is connected.

(b) Show that (up to isomorphisms) there is only one disconnected graph with n vertices and
�n−1

2

�

edges.

Solution:

(a) A graph with two connected components of sizes a, b ≥ 1 with a+ b = n has at least

ab = a(n− a)

missing edges. A graph with m>
�n−1

2

�

edges misses

�

n

2

�

−m<
�

n

2

�

−
�

n− 1

2

�

= n− 1.

But a(n− a)< n− 1 only holds for a < 1 or a > n− 1.

(b) With the argument in (a) we see that such a graph has to consist of a complete graph on n− 1 edges and one

isolated node.

Heute Mathe, morgen ???
Zwei Mathematikerinnen erzählen.

Vortragsreihe für Studierende der Mathematik

5. Juni   Rike Betten Gestern Mathe, dann Consultant, heute EnBW 
19. Juni  Prof. Dr. Hannah Markwig Gestern Mathe, heute ... Mathe 

jeweils Mittwoch, ab 14 Uhr in S1|03 223 
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