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Groupwork

Exercise G1

(a) Show that every tree T has at least ∆(T ) leaves.

(b) Show that a tree without a vertex of degree 2 has more leaves than other vertices.

Solution:

(a) From a vertex of maximal degree ∆(T ) follow a path in each direction until you reach a leave. These leaves are

pairwise distinct.

(b) Let n and m denote the number of vertices and edges, respectively. Then m = n− 1. If we denote by ni the

number of vertices of degree i we get

2(n− 1) = 2m=
∑

v∈V

deg v = n1 +
∑

i≥3

ini ≥ n1 + 3(n− n1)

and hence 2n1 ≥ n+ 2.

Exercise G2

Recall that an automorphism of a graph G = (V, E) is a bijective map φ : V → V such that {u, v } ∈ E⇔{φ(u),φ(v )} ∈
E for any u, v ∈ V .

Show that every automorphism of a tree fixes a vertex or an edge.

Solution: Let T = (V, E) be a tree. We prove the result by induction over n= |V |.
For n= 1 the assertion is trivial.

For n = 2 there are two automorphisms of T : The identity map fixes everything; the map that switches the two

vertices fixes the edge.

Now assume n ≥ 3. Let φ be an automorphism of T . Then φ permutes the leaves of T since automorphisms

preserves the degree. I.e., if v1, . . . , vk ∈ V are the leaves of T , then φ(v i) ∈ {v1, . . . , vk} for each i.
Now consider the tree T ′ = T − {v1, . . . , vk}. If we restrict φ to T ′ we obtain an automorphism of T ′. By the

induction hypothesis φ fixes a vertex or an edge of T ′ and hence φ also fixes a vertex or an edge of T .

Exercise G3

Let f , g : N→ N be two functions such that g ∈ Ω( f ). Assume that two algorithms are given:

• Algorithm A has a running time of O( f ).
• Algorithm B has a running time of O(g).

Consider the following two algorithms:

Algorithm 1:

Input: n ∈ N
1 s← 0
2 for i = 0, . . . , 100 do

3 Run Algorithm A
4 for i = 0, . . . , 2n do

5 Run Algorithm B

Algorithm 2:

Input: n ∈ N
1 if n≥ 100 then

2 Run Algorithm A
3 else

4 Run Algorithm B
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Estimate the running times as accurately as possible.

Solution: The running time of Algorithm 1 is given by 100O( f )+2nO(g) =O( f )+O(ng) =O(ng) since g ∈ Ω( f ).
For the running time of Algorithm 2 we have to keep in mind that we are only interested in the asymptotic behavior

as n→∞ and hence only the first part of the If-statement matters. The running time is thus O( f ).

Exercise G4

Let f , g : N→ N be two functions and a a constant. Prove:

(a) f ∈O( f )

(b) a ·O( f )⊆O( f )

(c) O( f ) +O( f )⊆O( f )

(d) O( f ) ·O(g)⊆O( f g)

(e) f ·O(g)⊆O( f g)

(f) max( f , g) ∈Θ( f + g)

Hint: For two sets A, B addition and multiplication are defined point-wise, e.g. for A = {a, b} and B = {c, d}:
A+ B = {a+ c, a+ d, b+ c, b+ d}, A · B = {ac, ad, bc, bd}.

Solution:

(a) With c = 1 we have f (n)≤ c · f (n) for all n≥ 0.

(b) Let h ∈ a ·O( f ). Then there is h′ ∈ O( f ) such that h = ah′. Moreover, there are n0, c such that h′(n) ≤ c f (n)
for all n≥ n0. With c′ = ac this yields h(n) = ah′(n)≤ ac f (n) = c′ f (n).

(c) Let h ∈ O( f ) + O( f ). Then there are h1, h2 ∈ O( f ) with h = h1 + h2. Moreover, there are c1, c2, n0,1, n0,2
such that hi(n) ≤ ci f (n) for n ≥ n0,i and i = 1, 2. With n0 = max{n0,1, n0,2} and c = c1 + c2 we then have

h(n) = h1(n) + h2(n)≤ c1 f (n) + c2 f (n) = c f (n) for all n≥ n0.

(d) Let h ∈ O( f ) ·O(g). Then there are h1 ∈ O( f ), h2 ∈ O(g) with h = h1h2. Moreover, there are c1, c2, n0,1, n0,2
such that h1(n)≤ c1 f (n) für n≥ n0,1 and h2(n)≤ c2 g(n) for n≥ n0,2. With n0 =max{n0,1, n0,2} and c = c1c2 we

then get h(n) = h1(n)h2(n)≤ c1 f (n)c2 g(n) = c( f g)(n) for all n≥ n0.

(e) Because of f ∈O( f ) this assertion follows from (d).

(f) We have f (n) + g(n) ≥ max( f , g)(n) ≥ 1
2
( f (n) + g(n)) for all n ∈ N. Hence c1( f + g)(n) ≥ max( f , g)(n) ≥

c2( f + g)(n) for c1 = 1, c2 =
1
2
. Thus max( f , g) ∈Θ( f + g).

Homework

Exercise H1 (5 points)

Recall that a subgraph of a graph G = (V, E) is a graph H = (W, F) with W ⊆ V, F ⊆ E. H is induced if F = E ∩
�W

2

�

.

Assume that a graph G = (V, E) with |V |= n and |E| ≥ 3 without isolated vertices does not have an induced subgraph

with two edges. Show that G = Kn, n≥ 3, i.e., G is a complete graph on n vertices.

Solution: Assume that there are two vertices u, v that are not connected by an edge. Since G has no induced subgraph

with two edges, there is no vertex that is connected with both u and v . Since G does not have isolated vertices, there

are two edges {a, u}, {b, v } ∈ E. If {a, b} 6∈ E, then the induced subgraph on a, b, u, v has two edges. Otherwise the

induced subgraph on u, a, b has two edges. This yields a contradiction. Hence G is a complete graph.

Exercise H2 (5 points)

Sort the functions

n, n3,
p

n, n!, 2n, nn

according to their complexity in ascending order using o-notation.

Reminder:

f ∈ o(g) ⇐⇒ ∀c > 0 ∃n0 ∈ N ∀n≥ n0 : 0≤ f (n)< cg(n)
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Solution: The order is
p

n, n, n3, 2n, n!, nn.
p

n ∈ o(n) : Choose n0 =
 

1
c2

£

+ 1.

n ∈ o(n3) : Choose n0 =
l
Æ

1
c

m

+ 1.

n3 ∈ o(2n) : We have to solve n3 < c2n for n. For n≥ 30 we have n3 < 2n/2. Thus, we can consider

2n

n3 > 2n/2 >
1

c
,

which holds for n> 2 log2
1
c
. Hence we may choose n0 =max

¦ 

2 log2
1
c

£

, 30
©

.

2n ∈ o(n!) : For n≥ 6 it holds that 2n < (n−1)!. For n> 1
c

then also cn!> n!
n
= (n−1)!> 2n. We may thus choose

n0 =max{6,
 

1
c

£

}.

n! ∈ o(nn) : Choose n0 =
 

1
c

£

+ 1.

Exercise H3 (5 points)

Consider the following algorithm:

Algorithm 3:

Input: n ∈ N
1 d ← 2
2 q← n
3 while q > d do

4 q← n/d
5 if

�

q
�

= q then

6 return d
7 else

8 d ← d + 1
9 return 0

What does it do? Estimate its running time.

Solution: The algorithms returns 0 if n is prime (or 1) and its smallest (positive) non-trivial divisor otherwise. To

this end, the algorithm test whether n can be divided by d = 2,3, . . . without remainder. If this is the case for some

d ∈ N, the algorithm stops and outputs d. Otherwise the algorithm stops if n
d
< d. Hence we always have d ≤

p
n

and the running time is O(
p

n). (In fact, one can even show that it is Θ(
p

n).)

Exercise H4 (5 points)

Let G = (V, E) be a connected Eulerian graph. Devise an algorithm that returns an Eulerian tour in G, prove its

correctness and estimate its running time in O-notation.

Solution: We assume that the graph is given as a (mutable) adjacency list A, i.e., A(v ) is the list of neighbors of v .

Algorithm 4:

Input: adjacency list A of a connected Eulerian graph G = (V, E)
1 v ← some vertex

2 W ← [v ]
3 repeat

4 W ′← [v ]
5 w← v
6 while A(w) is non-empty do

7 w′← A(w)(0)
8 append w′ to W ′

9 delete w′ from A(w) and w from A(w′)
10 w← w′

11 insert W ′ into W at v
12 while A(v ) is empty and v is not the last element of W do

13 v ← next vertex in W
14 until v =W (0)
15 return W
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The algorithm constructs an Eulerian trail W by building it up from shorter trails W ′.

In each iteration it starts at some vertex v and then constructs a longest possible trail W ′ along previously ununsed

edges. This always yields a closed trail, that is inserted into W at vertex v . I.e., if W = (v0, . . . , v , . . . , vn = v0) before,

then we set W = (v0, . . . , v , W ′, v , . . . , vn = v0). (W could be implemented as a linked list to make this efficient.)

Now we move along W until we find a new vertex that has unused edges left and repeat the process until we reach

the end of W .

The running time is O(m) since we traverse every edge once when inserting it into W . Moreover, in the search for

vertices with unused edges we traverse W a second time.

Note that in the proof of the running we need to carefully choose the data structures: First of all, we could store

our trails W and W ′ in linked lists, so that insertion can be done in constant time. Moreover, we need to ensure that

deleting vertices from adjacency lists can be done efficiently. To this end, we could store adjacency lists as linked lists

(so that deletion works in constant time) and endow each entry v ′ of an adjacency list A(v ) with a pointer to the

element v in the adjacency list A(v ) (the same edge). This makes it possible to delete w from A(w′) in constant time

in line 9.

Optimierung sucht HiWis:
http://www3.mathematik.tu-darmstadt.de/hp/optimierung/mars-sonja/optimierung-sucht-hilfskraefte.html
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