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Groupwork

Exercise G1

Show that a graph G = (V, E) is bipartite if and only if it does not contain cycles of odd length.

Solution:

“⇒” If G is bipartite with color classes A and B, then any path in G alternates between A and B. Hence every cycle

has even length.

“⇐” Let G be a graph that does not contain an odd cycle. We may w.l.o.g. assume that G is connected. Now fix

some vertex v ∈ V . Define A⊂ V to be the set of all vertices w such that there is a path of odd length in G from

v to w. Moreover, we define B = V \A. (Then B contains all vertices with even distance from v .) It now suffices

to show that
�A

2

�

∩ E,
�B

2

�

∩ E = ;, i.e., there are no edges between any vertices of A, respectively B.

Assume that there is an edge {a, a′} with a, a′ ∈ A. Then there are a [v , a]-path p1 and a [v , a′]-path p2 of odd

length. We can then construct a closed walk C = (v , p1a, a′, p2, v ) of odd length, which contains some odd cycle.

This contradicts our assumption.

The proof that there is no edge {b, b′} with b, b′ ∈ B is similar.

Exercise G2

Let G = (V, E) be a graph. Prove:

(a) Any walk with distinct endpoints v , w contains a path between v and w.

(b) Any closed walk contains a cycle.

Solution:

(a) Let p be a walk between v and w. If p is a path, we are done. Otherwise there is some vertex x that occurs

twice along p. We delete everything between the two occurrences and one of the x to get a new walk p′. We

then repeat this procedure until we obtain a path.

(b) The cycle is constructed similarly to the path in (a) except that we ignore the endpoint.

Exercise G3

A walk in a connected graph G = (V, E) is called an Eulerian trail if it contains each edge of G exactly once. A closed

Eulerian trail is called an Eulerian tour. The graph G is called Eulerian if it contains an Eulerian tour.

(a) Which of the graphs in Figure 1 are Eulerian.

(b) Let G be a connected graph. State conditions for G to be Eulerian and prove that these conditions are necessary.

(c) Are these conditions also sufficient?

Solution:

(a) no, yes, yes, no

(b) A necessary condition is: Every vertex has even degree. This is necessary, since along the cycle whenever we

arrive at a vertex, we have to leave it again. I.e., the edges incident to a vertex come in pairs.
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Figure 1: Eulerian or not?

(c) We show that the condition from (b) is sufficient by constructing an Eulerian tour.

We first pick some vertex v . Then we begin some walk in v along “unused” edges of G until we cannot go any

further. Since every vertex has even degree, the constructed walk p ends in v . If this is an Eulerian tour, we

are done. Otherwise there is some vertex v ′ in p that has unused edges left. We then start a new walk p′ in v ′.
Again, this has to end in v ′. We can then extend p to a walk p1 of the form p1 = (v , . . . , v ′, p′, v ′, . . . , v ). If we

repeat this process until no unused edges are left, we obtain an Eulerian tour.

Homework

Exercise H1 (5 points)

Show: In any graph with at least two vertices, there are at least two vertices with the same degree.

Solution: Let G be a graph with n vertices. The minimal degree of a vertex is 0, the maximal degree is n − 1.

Since not both 0 and n− 1 can occur as degrees, there are at most n− 1 different degrees. Thus, (by the pigeon hole

principle) at least two vertices have the same degree.

Exercise H2 (5 points)

For a graph G = (V, E), the graph G = (V,
�V

2

�

\ E) is called the complementary graph of G. Two vertices are adjacent

in G if and only if they are not adjacent in G.

Show: One of G and G is connected.

Solution: Assume that G is not connected. (Otherwise we are done.) Let V ′ ⊂ V be the vertex set of some connected

component of G. Fix v ∈ V \ V ′. We have to show that there is a path from v to any other vertex w ∈ V . If w ∈ V ′,
then G contains the edge {v , w}. Otherwise, choose some vertex v ′ ∈ V ′. Then G contains the edges {v , v ′} and

{v ′, w}. Hence (v , v ′, w) is a [v , w]-path in G. This shows that G is connected.

Exercise H3 (10 points)

Show that for a graph G = (V, E) with n≥ 2 vertices the following are equivalent:

(i) G is a tree.

(ii) G is connected and contains n− 1 edges.

(iii) G contains n− 1 edges, but no cycle.

(iv) G is minimally connected, i.e., G is connected but G− e is not connected for any e ∈ E.

(v) G is maximally acyclic, i.e., G is acyclic but G+ e contains a cycle for any e ∈
�V

2

�

\ E.

(vi) For each pair u, v ∈ V of vertices, there is a unique [u, v ]-path in G.
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Solution: We show (i)⇒ (ii)⇒ (iii)⇒ (iv )⇒ (v )⇒ (v i)⇒ (v ii)⇒ (i):

(i)⇒ (ii): We show that G has n− 1 edges by induction over n. If n = 1 then G has one vertex and 0 edges. Now

let G be a tree with n > 1 vertices and let v be a leave of G. We remove v and its incident edge to obtain a tree G′

with n− 1 vertices. By induction G′ has n− 2 edges and hence G has n− 1 edges.

(ii)⇒ (iii): Again, we show by induction over n that G has no cycle. If n = 1 then G has no edges and only one

vertex. This graph is obviously acyclic. Now assume that G has n> 1 vertices and n− 1 edges and is connected. By

connectedness every vertex has degree at least one. If deg v ≥ 2 for every vertex v then |E| = 1
2

∑

deg v ≥ n. Hence

G has a leave v . If we remove v and its incident edge, we obtain a connected graph G′ with n− 1 vertices and n− 2
edges. By induction G′ does not contain any cycle. Thus, G is also acyclic.

(iii)⇒ (iv ): We first show (by induction over n) that G is connected. If n= 1, then G is obviously connected. Now

let n > 1. Since G has no cycle, there is a longest path in G, whose endpoints are leaves. By removing a leave v and

its incident edge, we obtain a connected graph G′ with n− 1 vertices and n− 2 edges. By induction G′ is connected

and by construction G is so, too.

If there is no cycle, then there is at most one path between any two vertices. So removing any edge will make the

graph disconnected. Hence G is minimally connected.

(iv )⇒ (v ): We first show that G is acyclic. Suppose on the contrary that there is a cycle. Then we can remove

any edge from this cycle without affecting connectedness. Hence G is acyclic.

Now fix an edge e = uv 6∈ E. Since G is connected there is a path p from u to v in G. Hence G+ e contains a cycle

and thus G is maximally acyclic.

(v )⇒ (v i): Let u, v ∈ V . Since G is maximally acyclic there is a [u, v ]-path. Otherwise we could add the edge uv
without creating a cycle. On the other hand if there were two [u, v ]-paths p1, p2 then the concatenation of p1 and the

reverse of p2 forms a closed walk with startpoint u. By G2 this contains a cycle. Hence there is a unique [u, v ]-path.

(v i)⇒ (i): G is connected since for any u, v ∈ V there is a [u, v ]-path in G. Moreover, G is acyclic since this path

is unique. (The line argument is as in the previous part.)
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