Topological Groups 7. Exercise Sheet

Department of Mathematics Andreas Mars

Summer Term 2013 8.7.2013

Groupwork

Exercise G1 (Projective Limits)

Let $\mathscr{P} = \{f_{jk} : G_k \to G_j\}$ be a projective system of topological groups with limit maps $f_j : \lim_{\leftarrow} G_j = G \to G_j$. A **cone** over \mathscr{P} is a topological group *C* together with morphisms $\gamma_j : C \to G_j$ of topological groups, such that for $j \le k$ the identity $\gamma_j = f_{jk} \circ \gamma_k$ holds. In other words, the following diagram commutes:

- (a) Show that (or rather: Convince yourself that ...): The group *G* with the limit maps $f_i: G \to G_i$ is a cone over \mathscr{P} .
- (b) Show that with $C := \{1\}$ and the obvious maps γ_i we obtain a cone over \mathscr{P} .
- (c) Prove the following universal property of the projective limit: If $\{\gamma_j : C \to G_j\}$ is a cone over \mathscr{P} , then there exists a unique morphism $\gamma : C \to G = \lim_{\leftarrow} G_j$ such that $\gamma_j = f_j \circ \gamma$.

Exercise G2 (Compact Lie Groups)

Show that:

- (a) Every finite discrete group is a compact Lie group.
- (b) A finite direct product of compact Lie groups is a compact Lie group. What about infinite direct products?
- (c) A closed subgroup of a compact Lie group is a compact Lie group.

Exercise G3 (Divisibility)

Let *A* be an abelian group. Show that the following are equivalent:

- (a) A is divisible.
- (b) For every $a \in A$ there exists a homomorphism $f : \mathbb{Q} \to A$ such that f(1) = a.