Topological Groups 6. Exercise Sheet

Department of Mathematics Andreas Mars

Summer Term 2013 26.6.2013

Groupwork

Exercise G1 (Integrals) Let *G* be compact abelian, $\chi \in \hat{G}$ a non-trivial character and let μ be a/the Haar-measure of *G*. Show that:

$$\int_{\mathbb{G}}\chi(g)d\mu(g)=0$$

What happens with the value of $\int_G \chi(g) d\mu(g)$ if χ is trivial?

Exercise G2 (Divisibility)

Let $\frac{1}{p^{\infty}}\mathbb{Z}$ be the (additive) subgroup of \mathbb{Q} consisting of elements which be may be written in the form $\frac{m}{p^n}$, where $m \in \mathbb{Z}, n \in \mathbb{N}$. Define $\mathbb{Z}(p^{\infty}) := \frac{1}{p^{\infty}}\mathbb{Z}/\mathbb{Z}$. Show: $\mathbb{Z}(p^{\infty}) := \frac{1}{p^{\infty}}\mathbb{Z}/\mathbb{Z}$ is divisible.

Hint: Show first that every element in $\mathbb{Z}(p^{\infty})$ is of order p^m for some m. Conclude that the identity $p^k x = g$ has a solution in $\mathbb{Z}(p^{\infty})$ for all $g \in G$. Finally, show that in a finite abelian group of order m the identity nx = g has a solution for every n which is coprime to m. Now you're done, why?

Definition: For *p* a prime the group $\mathbb{Z}(p^{\infty})$ is called **Prüfer-group**.

Exercise G3 (More hats)

Let $\varphi: A \to B$ be a morphism. This induces a morphism $\hat{\varphi}: \hat{B} \to \hat{A}$ via $\hat{\varphi}(\chi) = \chi \circ \varphi$. Show: For every morphism $f: A \to \hat{G}$ there exists a morphism $f': G \to \hat{A}$ such that $f = \hat{f'} \circ \eta_A$. *Hint*: Define f'(g)(a) := f(a)(g) and apply the definitions. Conversely, for every morphism $f: G \to \hat{A}$ there exists a morphism $f': A \to \hat{G}$ such that $f = \hat{f'} \circ \eta_G$

Exercise G4 (Even more hats)

Let *A* be abelian, then $\hat{\eta}_A \circ \eta_{\hat{A}} = id_{\hat{A}}$ and for a compact abelian group *G* we have $\hat{\eta}_G \circ \eta_{\hat{G}} = id_{\hat{G}}$

Exercise G5 (Recently in the hat shop...)

If *A* is abelian and η_A is an isomorphism, then $\eta_{\hat{A}}$ is an isomorphism as well. Similarly, if *G* is compact abelian and η_G an isomorphism, then $\eta_{\hat{G}}$ is an isomorphism.