Topological Groups 5. Exercise Sheet

Department of Mathematics Andreas Mars

Summer Term 2013 12.6.2013

Groupwork

Exercise G1 (Warming Up)

Prove or disprove: The map $\phi \mapsto \int_0^1 \phi(x) dx$ is a Haar-integral on \mathbb{R} .

Exercise G2 (Unimodular Groups)

Let G be the subgroup of upper triangular matrices $SL_2(\mathbb{R})$. Show that G is not unimodular.

Exercise G3 (Applications of the Haar-integral)

Let *G* be locally compact and let λ be a Haar-integral on *G*. Consider the space $C_c^{\mathbb{C}}(G) := \{f + ih \mid f, h \in C_c(G)\}$ and the natural extension λ to this space. Show that:

The map

$$\langle \cdot, \cdot \rangle \colon C_c^{\mathbb{C}}(G) \times C_c^{\mathbb{C}}(G) \to \mathbb{C}$$

$$(f, h) \mapsto \lambda(f\overline{h})$$

is a unitary scalar product on $C_c^{\mathbb{C}}(G)$ and the transformation $f\mapsto f_g$ is unitary for every $g\in G$. Conclude that the completion of the space $(C_c^{\mathbb{C}}(G),\langle\cdot,\cdot\rangle)$ is a Hilbert space and G admits a unitary representation on this space.

Exercise G4 (Character Groups)

Compute the character group of \mathbb{T} .