Topological Groups 4. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Andreas Mars

Summer Term 2013 29.5.2013

Groupwork

Exercise G1 (Lebesgue measure) Show that the Lebesgue measure on \mathbb{R}^n is a Haar measure.

Exercise G2 (Haar measures)

Let *G* be a finite group. Find all Haar measures on *G*. What happens if we assume *G* to be discrete, but possibly infinite (for instance $G = \mathbb{Z}$)?

Exercise G3 (Some Group Theory)

Let *G* be a group, *A* an abelian group and let $f : G \to A$ be a group homomorphism. Show that: $[G,G] \le \ker(f)$. Conclude: If *G*,*A* are topological groups, *A* is Hausdorff and *f* continuous, then it follows that $\overline{[G,G]} \le \ker(f)$.

Exercise G4 (Locally Compact Groups)

Prove or give a counterexample: A direct product of a family of locally compact groups is locally compact.

Exercise G5 (Existence of Functions)

Let *G* be locally compact and Hausdorff. Show that for $U \in \mathfrak{U}$ there exists a function $0 \neq f \in C_c^+(G)$ with $\operatorname{supp}(f) \subseteq U$. Hint: Show that every locally compact group is $T_{3\frac{1}{2}}$, i.e. a point and a closed set may be separated by a continuous

function (this requires some work). Use this fact with a suitable point and a suitable closed subset of G.