Topological Groups 3. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Andreas Mars

Summer Term 2013 22.5.2013

Groupwork

Exercise G1 (Open Mapping Theorems)

Let τ_{disc} be the discrete and τ the usual order topology on \mathbb{R} . The map id: $(\mathbb{R}, \tau_{disc}) \to (\mathbb{R}, \tau)$ is continuous, but obviously fails to be open. Why are the Open Mapping Theorems not applicable?

Exercise G2 (Morphisms) Show that a homomorphism $f : G \to H$ is continuous and open if and only if $f(\mathfrak{U}_G) = \mathfrak{U}_H$.

Exercise G3 (Totally Disconnected Groups)

Let *G* be a connected group and let *N* be a totally disconnected normal subgroup of *G*. Show that $N \leq Z(G)$, i.e. every element of *N* is central in *G*.

Exercise G4 (Connected Groups) Let *G* be a connected group and let $U \in \mathfrak{U}$ be an identity neighbourhood. Prove or give a counterexample: $G = \langle U \rangle$.

Homework

Exercise H1 (Locally Compact Groups)

Let *G* be locally compact and connected. Then there exists a compact identity neighbourhood $K \subseteq G$ such that $G = \langle K \rangle$. In particular, connected locally compact groups are compactly generated.

Exercise H2 (Open Subgroups)

Let *G* be a topological group. Show that a subgroup is open if and only if it is clopen if and only if it contains an interior point.

Exercise H3 (Vector Spaces)

Let *V* be a real vector space with two norms $||.||_1$ and $||.||_2$ such that *V* becomes complete with respect to both norms. Assume that there exists a constant c > 0 such that $||x||_1 \le c||x||_2$ for all $x \in V$. Show that the two topologies induced by the norm coincide.