Topological Groups 1. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Andreas Mars

Summer Term 2013 17.4.2013

Groupwork

Exercise G1 (Homogeneous Spaces) Give a proof or a counterexample:

(a) A discrete or indiscrete topological space is homogeneous.

- (b) The open interval $(0, \infty) \subseteq \mathbb{R}$ with the order topology is homogeneous.
- (c) The compact unit interval $[0,1] \subseteq \mathbb{R}$ with the order topology is homogeneous.

Exercise G2 (Topological Groups)

- (a) Prove: The matrix groups $\operatorname{GL}_n(\mathbb{R})$, $\operatorname{GL}_n(\mathbb{C})$, $\operatorname{SL}_n(\mathbb{R})$ and $\operatorname{SL}_n(\mathbb{C})$ equipped with the subspace topology induced from $\mathbb{R}^{n \times n}$ resp. $\mathbb{C}^{n \times n}$ are topological groups.
- (b) Show that all groups from part (a) are closed subgroups of $GL_n(\mathbb{C})$. Is one of them an open subgroup?
- (c) Show that for $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ the group $GL_n(\mathbb{F})$ is open in $\mathbb{F}^{n \times n}$, while $SL_n(\mathbb{F})$ is closed in $\mathbb{F}^{n \times n}$.
- (d) Prove: A group *G* equipped with a topology τ is a topological group if and only if the map

$$G \times G \to G$$

 $(g,h) \mapsto gh^{-1}$

is continuous with respect to τ .

(e) Let $H \leq G$ be an open subgroup. Give a proof or counterexample: Then *H* is a closed subgroup.

Exercise G3 (Subgroups and Quotients)

Show:

(a) Let $H \leq G$ be a subgroup of a topological group *G*. Then the map

$$(g,g'H) \mapsto gg'H$$

in continuous in the second argument.

(b) If G/H is Hausdorff, then H is a closed subgroup. Give necessary and sufficient condition(s) on H such that the quotient G/H is a topological group again.

Exercise G4 (Topological Manifolds)

Prove Proposition 1.6: A connected Hausdorff topological manifold X is homogeneous.

- (a) Show that for every two points x, y in the open unit ball $B_1(0)$ of \mathbb{R}^n there exists a homeomorphism of the closed unit ball $\overline{B_1(0)}$ which maps x to y and which fixes the boundary $\partial \overline{B_1(0)}$ pointwise.
- (b) For x ∈ X and U an open neighbourhood of x, there exists an open neighbourhood V of x with the property that V ⊆ U and the property that for all v ∈ V there is a homeomorphism f : V → V with f(x) = v, which extends to a homeomorphism of X. Hint: Where can you use (i)?
- (c) For arbitrary $x, y \in X$ there exists a compact line segment connecting x and y. Hint: Now you're done, using (ii). Why?

Homework

Exercise H1 (More Topological Groups) Prove:

- (a) The torus $\mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$ equipped with usual complex multiplication and the subspace topology from \mathbb{C} is a topological group.
- (b) The space \mathbb{R}/\mathbb{Z} with the quotient topology and the operation $(x, y) \mapsto x + y \pmod{1}$ is a topological group.
- (c) The exponential map exp: $\mathbb{R}/\mathbb{Z} \to \mathbb{T}, x \mapsto e^{2\pi i x}$ is a group homomorphism which is bijective, continuous and open (i.e. an isomorphism of topological groups).

Exercise H2 (Construction of Topological Groups) Prove Proposition 2.6:

- (a) Let G be a topological group and let $H \leq G$ be a subgroup equipped with the subspace topology. Then H is a topological group.
- (b) Let $\{G_i\}_{i \in I}$ be an arbitrary family of topological groups and equip the cartesian product $\prod_{i \in I} G_i$ with the usual product topology. Then $\prod_{i \in I} G_i$ is a topological group.
- (c) Let $N \triangleleft G$ be a normal subgroup and equip G/N with the quotient topology. Then G/N is a topological group. Also try to show that G/N is Hausdorff if and only if $N = \overline{N}$.

Exercise H3 (A Quotient)

Consider the additive group \mathbb{R} with the usual order topology and its subgroup \mathbb{Q} . Since \mathbb{R} is abelian, every subgroup is normal, hence in particular \mathbb{Q} is and we may consider the quotient group $G := \mathbb{R}/\mathbb{Q}$.

- (a) Remind yourself that G is a topological group. Is it Hausdorff, T_1 and/or T_0 ?
- (b) Prove or disprove: The subgroup $\{1\}$ is dense in *G*.

Hint: Compare the groups $G/\overline{\{1\}}$ and $\mathbb{R}/\overline{\mathbb{Q}}$. Do you notice something?