classical undecidability results for FO

$$\mathrm{Th}(\mathfrak{N}) := \big\{ \varphi \in \mathrm{FO}_{\mathbf{0}}(\sigma_{\mathrm{ar}}) \colon \mathfrak{N} = (\mathbb{N}, +, \cdot, \mathbf{0}, \mathbf{1}, <) \models \varphi \big\}$$

theorem (Tarski)

 $Th(\mathfrak{N})$ undecidable and not recursively axiomatisable

method: reduction from H

based on FO-definable arithmetical encoding of finite sequences over \mathbb{N}

M Otto

Gödel's β for quantification over finite sequences

Winter 12/13

Gödels Incompleteness Theorems

Gödel's incompleteness theorems show that Hilbert's programme cannot be fulfilled, in a very strong sense

- reasonable FO-axiomatisations of sufficiently rich theories are necessarily incomplete and cannot prove their own consistency
- these limitations are 'limitations in principle'

method: self-reference & diagonalisation (Epimenides' liar) via internalisation of notions of recursion and provability in FO theories that support enough arithmetic

55/62

completeness & recursive axiomatisation

basic definitions:

a FO-theory $T \subseteq FO_0(\sigma)$ is complete if for all $\varphi \in FO_0(\sigma)$, $\varphi \in T$ or $\neg \varphi \in T$

a FO-axiomatisation $\Phi \subseteq FO_0(\sigma)$ is complete if for all $\varphi \in FO_0(\sigma)$, $\Phi \vdash \varphi$ or $\Phi \vdash \neg \varphi$

 $T \subseteq FO_0(\sigma)$ recursively axiomatisable if $T = \Phi^{\vdash}$ for some recursive $\Phi \subseteq FO_0(\sigma)$

remarks:

T complete and recursively axiomatisable \Rightarrow T recursive

T has a recursive axiom system if, and only if,

 \mathcal{T} has a recursively enumerable axiom system

Winter 12/13

Intr.Math.Log.

M Otto

57/62

representativity

fix σ and $\Phi \subseteq FO_0(\sigma)$ together with a recursive map for the representation of natural numbers by variable-free terms:

 $\left. \begin{array}{ccc} \mathbb{N} & \longrightarrow & \mathcal{T}_{\sigma}(\emptyset) \\ n & \longmapsto & \underline{n} \end{array} \right\} \hspace{0.2cm} \text{such that} \hspace{0.1cm} \Phi \vdash \neg \underline{n} = \underline{m} \hspace{0.1cm} \text{for all} \hspace{0.1cm} n \neq m \in \mathbb{N} \end{array}$

•
$$\varphi(\mathbf{x})$$
 represents $R \subseteq \mathbb{N}^n$ if, f.a. $\mathbf{m} \in \mathbb{N}^n$,

 $\begin{array}{ll} \mathbf{m} \in R & \Rightarrow & \Phi \vdash \varphi(\underline{\mathbf{m}}) \\ \mathbf{m} \notin R & \Rightarrow & \Phi \vdash \neg \varphi(\underline{\mathbf{m}}) \end{array}$

•
$$\varphi(\mathbf{x}, z)$$
 represents $f : \mathbb{N}^n \to \mathbb{N}$ if, f.a. $\mathbf{m} \in \mathbb{N}^n$,
 $\Phi \vdash \exists^{=1} z \, \varphi(\mathbf{m}, z) \land \varphi(\mathbf{m}, f(\mathbf{m}))$

examples of theories and representations

definition:

 Φ admits representations if every total recursive function $f: \mathbb{N}^n \to \mathbb{N}$ (and every recursive $R \subseteq \mathbb{N}^n$) can be represented

examples:

• Th(\mathfrak{N}), first-order Peano arithmetic, and Julia Robinson's finite $Q \subseteq Th(\mathfrak{N})$, all with $n \mapsto \underline{n} = \underbrace{1 + \cdots + 1}$

• ZFC with
$$\underline{0} = \emptyset$$
, $\underline{n+1} = \underline{n} \cup \{\underline{n}\}$

Intr.Math.Log.	Winter 12/13	M Otto	59/62

Julia Robinson's weak arithmetical theory Q

$$Q \subseteq \operatorname{Th}(\mathfrak{N}):$$

$$\forall x \ x + 1 \neq 0$$

$$\forall x \forall y (x \neq y \rightarrow x + 1 \neq y + 1)$$

$$\forall x (x \neq 0 \rightarrow \exists y \ x = y + 1)$$

$$\begin{cases} \forall x \ x + 0 = x \\ \forall x \forall y (x + (y + 1) = (x + y) + 1) \end{cases}$$

$$\begin{cases} \forall x \ x \cdot 0 = 0 \\ \forall x \forall y (x \cdot (y + 1) = (x \cdot y) + x) \end{cases}$$

self-reference: the fixpoint theorem

fix bijective, recursive Gödelisation ^[]:

$$\begin{array}{ccc} \operatorname{FO}(\sigma) & \longrightarrow & \mathbb{N} \\ \varphi & \longmapsto & \ulcorner \varphi \end{matrix}$$

with recursive inverse $n \mapsto \varphi_n$

fixpoint thm

for $\Phi \subseteq FO(\sigma)$ with representation and Gödelisation as above, find (recursively) for every $\psi(x) \in FO(\sigma)$ a sentence $\varphi \in FO_0(\sigma)$ with $\Phi \vdash \varphi \leftrightarrow \psi(\boxed{\varphi})$

Intr.Math.Log.	Winter 12/13	M Otto	61/62

Gödel's first incompleteness theorem

from fixpoint theorem obtain

thm:

if Φ admits representations and is consistent, then Φ cannot represent $T := \Phi^{\vdash}$; it follows that T is undecidable

Tarski's thm

for $\Phi = Th(\mathfrak{N})$: $Th(\mathfrak{N})$ not representable in $Th(\mathfrak{N})$, "there is no arithmetical truth-predicate for arithmetic"

Gödel's first incompleteness theorem

if Φ admits representations, is consistent and recursive, then $\mathcal{T}:=\Phi^{\vdash}$ is incomplete