some decidable sets (languages):
$T_{\sigma}, \mathrm{FO}(\sigma), \ldots$
ZFC (the set of axioms)
some computable functions:
$\operatorname{qr}(\varphi), \operatorname{rk}(\varphi), \operatorname{free}(\varphi), \ldots$
substitution $(\varphi, \mathbf{x}, \mathbf{t}) \mapsto \varphi \frac{\mathbf{t}}{\mathbf{x}}$
truth values of $\varphi \in \mathrm{FO}_{0}(\sigma)$ over finite σ-structures
some r.e. sets (languages or relations):
$\operatorname{VAL}(\mathrm{FO}(\sigma))=\{\varphi \in \mathrm{FO}(\sigma): \models \varphi\}$
$\left\{(\varphi, \psi) \in \mathrm{FO}(\sigma)^{2}: \varphi \models \psi\right\}$
$(\mathrm{ZFC})^{\vdash}=(\mathrm{ZFC})^{\vDash}$ (set theory: the set of consequences)

towards undecidability

Gödelisation of R-programs over fixed \mathbb{A} :
natural encoding of R -programs as \mathbb{A}-words

$$
\begin{aligned}
\ulcorner\neg:\{\mathrm{P}: \mathrm{P} \text { R-program over } \mathbb{A}\} & \longrightarrow \mathbb{A}^{*} \\
\mathrm{P} & \longmapsto{ }^{\circ} \mathrm{P}
\end{aligned}
$$

with the property that

- \urcorner and its (partial) inverse are 'computable'
- any 'decidable'/'computable' relation/function on R-programs P is (R -) decidable/computable in terms of $\left.{ }^{\ulcorner } \mathrm{P}\right\urcorner$
- so that there is a universal R-program U w.r.t. \urcorner over \mathbb{A} :
$\left({ }^{\ulcorner } \mathrm{P}^{\urcorner}, \mathbf{u}\right) \xrightarrow{\mathrm{U}}$ STOP and
$(\ulcorner\mathrm{P}, \mathbf{u}) \xrightarrow{\mathrm{U}} \mathbf{w}$
iff $\mathbf{u} \xrightarrow{\mathrm{P}}$ STOP
iff $\quad \mathbf{u} \xrightarrow{\mathrm{P}}$

self-reference, halting problem

halting problem(s) for R-programs over \mathbb{A} :
$\mathrm{H}:=\left\{{ }^{\ulcorner } \mathrm{P}\right\urcorner: \square \xrightarrow{\mathrm{P}}$ STOP $\}$
$\widehat{\mathrm{H}}:=\{\ulcorner\mathrm{P}\urcorner:\ulcorner\mathrm{P}\urcorner \xrightarrow{\mathrm{P}}$ STOP $\}$
both undecidable (with a simple reduction between the two)
originally formulated for Turing machines (Alan Turing 1936)
classical undecidability results for FO
FINSAT(FO) $=\left\{\varphi \in \mathrm{FO}_{0}\left(\sigma_{\infty}\right): \varphi\right.$ satisfiable in a finite model $\}$ $\operatorname{SAT}(\mathrm{FO})=\left\{\varphi \in \mathrm{FO}_{0}\left(\sigma_{\infty}\right): \varphi\right.$ satisfiable $\}$
clearly: FINSAT (FO) $\ddagger \operatorname{SAT}(\mathrm{FO})$
FINSAT(FO) r.e.; SAT(FO) co-r.e.
theorem (Trakhtenbrot)
FINSAT(FO) undecidable (not co-r.e.)
theorem (Church-Turing)
SAT(FO) undecidable (not r.e.)
method: reductions from $H / \overline{\mathrm{H}}$
$\operatorname{Th}(\mathfrak{N}):=\left\{\varphi \in \mathrm{FO}_{0}\left(\sigma_{\text {ar }}\right): \mathfrak{N}=(\mathbb{N},+, \cdot, 0,1,<) \models \varphi\right\}$
theorem (Tarski)
$\operatorname{Th}(\mathfrak{N})$ undecidable and not recursively axiomatisable
method: reduction from H
based on FO-definable arithmetical encoding of finite sequences over \mathbb{N}

Gödel's β \& Chinese remainder thm

