basic recursion theory

specific models of computation delineate notions of

- algorithmic solvability
- computability (of partial functions)
- decidability (of sets or relations)
- recursive enumerability (of sets or relations)
different approaches
- Turing machines, register machines, μ-recursive functions, ... lead to provably co-extensive notions

Church-Turing Thesis:

these models of computation capture the 'true' concepts of algorithmic solvability/decidability/enumerability

algorithms, recursion theory

general conventions:

work with finite alphabet \mathbb{A} for coding of data (information)
\mathbb{A}^{*} : the set of \mathbb{A}-words $w \in \mathbb{A}^{*}$, of finite lengths $|w| \in \mathbb{N}$, including the empty word $\square \in \mathbb{A}^{*}$ of length $|\square|=0$
$\left.\begin{array}{l}\text { input (problem instances, arguments) } \\ \text { output (answers, function values) }\end{array}\right\}$ tuples over \mathbb{A}^{*}

key requirements for models of computation:

elementary steps of data manipulation, simple small steps, local data access, uniform rule-based control, ...
examples: Turing machines, register machines
data format over alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{r}\right\}$:
registers R_{1}, \ldots, R_{n} for storing n-tuples $\left(w_{1}, \ldots, w_{n}\right) \in\left(\mathbb{A}^{*}\right)^{n}$

elementary operations:

push and pop operations:

- $R_{j}:=R_{j}+a_{i} \quad$ (append letter a_{i} to content w_{j} of register R_{j})
- $R_{j}:=R_{j}-a_{i}$ (delete last letter in register R_{j} if w_{j} ends in a_{i})
stop command:
- STOP (halt, terminate program execution)

control structure:

consecutively numbered program lines with conditional branching:

- IF $R_{j}=\square$ THEN ℓ_{0} ELSE ℓ_{1} OR \ldots OR ℓ_{r} (case distinction on (last letter of) register content w_{j} of R_{j})

R-programs \& R-computation

execution of program P on input $\mathbf{w} \in\left(\mathbb{A}^{*}\right)^{m}$
proceeds by step-wise configuration updates,
and either
diverges: $\quad \mathbf{w} \xrightarrow{P} \infty$,
if STOP-command is never reached
or
terminates, halts: $\quad \mathbf{w} \xrightarrow{\mathrm{P}}$ STOP and $\mathbf{w} \xrightarrow{\mathrm{P}} \mathbf{w}^{\prime}$
if STOP-command is reached (final configuration, output)

R-recursiveness, partial R-recursive functions

the R-program P on registers R_{1}, \ldots, R_{n} over \mathbb{A} computes the partial function:

$$
\begin{aligned}
f:\left(\mathbb{A}^{*}\right)^{n} & \longrightarrow\left(\mathbb{A}^{*}\right)^{n} \\
\mathbf{w} & \longmapsto f(\mathbf{w})
\end{aligned}
$$

where $\operatorname{dom}(f)=\left\{\mathbf{w} \in\left(\mathbb{A}^{*}\right)^{n}: \mathbf{w} \xrightarrow{\mathrm{P}} \operatorname{STOP}\right\}$

$$
\text { and } \mathbf{w} \xrightarrow{\mathrm{P}} f(\mathbf{w}) \text { for } \mathbf{w} \in \operatorname{dom}(f)
$$

suitable input/output conventions allow for computation of

- partial functions $f:\left(\mathbb{A}^{*}\right)^{m} \longrightarrow\left(\mathbb{A}^{*}\right)^{m^{\prime}}$ for $m, m^{\prime} \leqslant n$
- partial functions with boolean output in $\mathbb{B}=\{0,1\}$

(R -)recursiveness, (R -)recursive enumerability

- a partial function is (R-)recursive/(R-)computable if it is the partial function computed by some R-program
- a relation $R \subseteq\left(\mathbb{A}^{*}\right)^{n}$ is (R-)recursive/(R-)decidable if its (total) characteristic function is computed by an R-program
- a relation $R \subseteq\left(\mathbb{A}^{*}\right)^{n}$ is (R-)recursively enumerable (r.e.) if it is the domain of some partial (R-)recursive function
- a relation $R \subseteq\left(\mathbb{A}^{*}\right)^{n}$ is (R-)co-r.e. if its complement is (R-)r.e.

remarks:

- unary $L \subseteq \mathbb{A}^{*}$ are called \mathbb{A}-languages
- recursive enumerability as semi-decidability: R is recursive iff R is both r.e. and co-r.e.

