
basic recursion theory

specific models of computation delineate notions of

• algorithmic solvability
• computability (of partial functions)
• decidability (of sets or relations)
• recursive enumerability (of sets or relations)

different approaches
— Turing machines, register machines, µ-recursive functions, . . .
lead to provably co-extensive notions

Church–Turing Thesis:
these models of computation capture the ‘true’ concepts of
algorithmic solvability/decidability/enumerability

Intr.Math.Log. Winter 12/13 M Otto 45/50

algorithms, recursion theory

general conventions:

work with finite alphabet A for coding of data (information)

A
∗: the set of A-words w ∈ A

∗, of finite lengths |w | ∈ N,
including the empty word 2 ∈ A

∗ of length |2| = 0

input (problem instances, arguments)
output (answers, function values)

}

tuples over A∗

key requirements for models of computation:

elementary steps of data manipulation,
simple small steps, local data access,
uniform rule-based control, . . .

examples: Turing machines, register machines

Intr.Math.Log. Winter 12/13 M Otto 46/50

register machines & programs

data format over alphabet A = {a1, . . . , ar}:

registers R1, . . . ,Rn for storing n-tuples (w1, . . . ,wn) ∈ (A∗)n

elementary operations:

push and pop operations:
• Rj := Rj + ai (append letter ai to content wj of register Rj)
• Rj := Rj − ai (delete last letter in register Rj if wj ends in ai)

stop command:
• STOP (halt, terminate program execution)

control structure:

consecutively numbered program lines with conditional branching:

• IF Rj = 2 THEN ℓ0 ELSE ℓ1 OR . . . OR ℓr
(case distinction on (last letter of) register content wj of Rj)

Intr.Math.Log. Winter 12/13 M Otto 47/50

R-programs & R-computation

execution of program P on input w ∈ (A∗)m

proceeds by step-wise configuration updates,
and either

diverges: w
P

−→ ∞,
if STOP-command is never reached

or

terminates, halts: w
P

−→ STOP and w
P

−→ w′

if STOP-command is reached (final configuration, output)

Intr.Math.Log. Winter 12/13 M Otto 48/50

R-recursiveness, partial R-recursive functions

the R-program P on registers R1, . . . ,Rn over A
computes the partial function:

f : (A∗)n −→ (A∗)n

w 7−→ f (w)

where dom(f) =
{

w ∈ (A∗)n : w
P

−→ STOP
}

and w
P

−→ f (w) for w ∈ dom(f)

suitable input/output conventions allow for computation of

• partial functions f : (A∗)m −→ (A∗)m
′

for m,m′ 6 n

• partial functions with boolean output in B = {0, 1}

Intr.Math.Log. Winter 12/13 M Otto 49/50

(R-)recursiveness, (R-)recursive enumerability

• a partial function is (R-)recursive/(R-)computable if
it is the partial function computed by some R-program

• a relation R ⊆ (A∗)n is (R-)recursive/(R-)decidable if
its (total) characteristic function is computed by an R-program

• a relation R ⊆ (A∗)n is (R-)recursively enumerable (r.e.) if
it is the domain of some partial (R-)recursive function

• a relation R ⊆ (A∗)n is (R-)co-r.e. if its complement is (R-)r.e.

remarks:

– unary L ⊆ A
∗ are called A-languages

– recursive enumerability as semi-decidability:
R is recursive iff R is both r.e. and co-r.e.

Intr.Math.Log. Winter 12/13 M Otto 50/50

