basic recursion theory

specific models of computation delineate notions of

e algorithmic solvability

e computability (of partial functions)

e decidability (of sets or relations)

e recursive enumerability (of sets or relations)

different approaches
— Turing machines, register machines, u-recursive functions, ...
lead to provably co-extensive notions

Church—Turing Thesis:
these models of computation capture the ‘true’ concepts of
algorithmic solvability /decidability /enumerability

Intr.Math.Log. Winter 12/13 M Otto 45/50

algorithms, recursion theory

general conventions:
work with finite alphabet A for coding of data (information)

A*: the set of A-words w € A*, of finite lengths |w| € N,
including the empty word O € A* of length |O0] =0

input (problem instances, arguments)

. tuples over A*
output (answers, function values)

key requirements for models of computation:

elementary steps of data manipulation,
simple small steps, local data access,
uniform rule-based control, ...

examples: Turing machines, register machines

Intr.Math.Log. Winter 12/13 M Otto 46/50

register machines & programs

data format over alphabet A = {a;,...,a,}:

registers Ry, ..., R, for storing n-tuples (wy,...,w,) € (A*)"

elementary operations:

push and pop operations:
e Ri:=R;j+a; (append letter a; to content w; of register R;)
o Ri:=R;— a; (delete last letter in register R; if w; ends in a;)

stop command:
e STOP (halt, terminate program execution)

control structure:
consecutively numbered program lines with conditional branching:

e IF Rj =0 THEN ¢y ELSE ¢/; OR ...OR ¢,
(case distinction on (last letter of) register content w; of R;)

Intr.Math.Log. Winter 12/13 M Otto 47/50

R-programs & R-computation

execution of program P on input w € (A*)™
proceeds by step-wise configuration updates,
and either

diverges: w N 00,
if STOP-command is never reached
or

terminates, halts: w —» STOP and w — w/
if STOP-command is reached (final configuration, output)

Intr.Math.Log. Winter 12/13 M Otto 48/50

R-recursiveness, partial R-recursive functions

the R-program P on registers Ry, ..., R, over A
computes the partial function:

f:(A")" — (A")"
w — f(w)

where dom(f) = {w € (A*)": w N STOP}
and w —s f(w) for w € dom(f)

suitable input/output conventions allow for computation of
e partial functions f: (A*)™ — (A*)™ for m,m’ < n

e partial functions with boolean output in B = {0,1}

Intr.Math.Log. Winter 12/13 M Otto 49/50

(R-)recursiveness, (R-)recursive enumerability

e a partial function is (R-)recursive/(R-)computable if
it is the partial function computed by some R-program

e a relation R C (A*)" is (R-)recursive/(R-)decidable if
its (total) characteristic function is computed by an R-program

e a relation R C (A*)" is (R-)recursively enumerable (r.e.) if
it is the domain of some partial (R-)recursive function

e a relation R C (A*)" is (R-)co-r.e. if its complement is (R-)r.e.

remarks:
—unary L C A* are called A-languages

— recursive enumerability as semi-decidability:
R is recursive iff R is both r.e. and co-r.e.

Intr.Math.Log. Winter 12/13 M Otto 50/50

