consequences

- adequacy of a syntactic calculus (our sequent calculus) for all FO-based mathematical reasoning
- finite syntactic certificates (formal proofs) for all FO truths; recursive enumerability of all validities

example: FO group theory,

$$\begin{aligned} \left\{ \varphi \in \mathrm{FO}_{\mathbf{0}}(\{\circ, \boldsymbol{e}\}) \colon \left\{ \varphi_{\mathrm{G1}}, \varphi_{\mathrm{G2}}, \varphi_{\mathrm{G3}} \right\} &\models \varphi \right\} \\ &= \left\{ \varphi_{\mathrm{G1}}, \varphi_{\mathrm{G2}}, \varphi_{\mathrm{G3}} \right\}^{\vdash} \subseteq \mathrm{FO}_{\mathbf{0}}(\{\circ, \boldsymbol{e}\}) \end{aligned}$$

can be algorithmically generated (r.e.)

model-theoretic consequences

- compactness: finiteness property for satisfiability (!)
- Löwenheim–Skolem theorems:
 - (\downarrow) countable consistent FO theories have countable models
 - (↑) FO theories with infinite models have models of arbitrarily large cardinalities

and further, from these:

- *no* infinite structure \mathfrak{A} is fixed up isomorphism by its FO theory $\operatorname{Th}(\mathfrak{A}) = \{\varphi \in \operatorname{FO}_0 \colon \mathfrak{A} \models \varphi\}$
- weaknesses/strengths of first-order logic/model theory: non-standard models, saturated models, ... richness of classical model theory, ...

compactness

 $\Phi \subseteq \mathrm{FO}$ satisfiable if every finite subset $\Phi_0 \subseteq \Phi$ is satisfiable

- a finiteness property for satisfiability
- also a topological compactness assertion
- *the* tool (for model construction) in classical model theory

from finiteness property for consistency, via completeness

variants:

 Φ unsatisfiable \Rightarrow some finite $\Phi_0 \subseteq \Phi$ unsatisfiable

M Otto

 $\Phi \models \varphi \Rightarrow \Phi_0 \models \varphi$ for some finite $\Phi_0 \subseteq \Phi$

Intr.Math.Log.

Winter 12/13

Löwenheim–Skolem theorems

for FO-theories $\Phi \subseteq FO_0(\sigma)$:

- (\downarrow) Φ countable and satisfiable \Rightarrow Φ has a countable model
- (\uparrow) Φ has an infinite model \Rightarrow Φ has models in arbitrarily large cardinality

corollary: no FO-theory can determine any infinite structure up to isomorphism

35/38

non-standard models

 $\mathrm{Th}(\mathfrak{A}) = \big\{ \varphi \in \mathrm{FO}_{\mathsf{0}}(\sigma) \colon \mathfrak{A} \models \varphi \big\}$

the complete FO-theory of $\sigma\text{-structure}\ \mathfrak{A}$

for familiar infinite standard structures ${\mathfrak A}$ of mathematics,

 $\mathfrak{A}^* \models \operatorname{Th}(\mathfrak{A})$ with $\mathfrak{A}^* \not\simeq \mathfrak{A}$

is a non-standard companion of \mathfrak{A} :

indistinguishable from \mathfrak{A} in FO, but different – possibly in useful ways, especially if $\mathfrak{A} \subseteq \mathfrak{A}^*$ and even $\mathfrak{A} \preccurlyeq \mathfrak{A}^*$

examples: non-standard models of natural and real arithmetic with 'infinite numbers' and 'infinitesimals'

Intr.Math.Log. Winter 12/13 M Otto 37/38

example: non-standard analysis

find non-standard models of (expansions of) real arithmetic $\mathfrak{R} = (\mathbb{R}, +, \cdot, 0, 1, <, ...)$ $\mathfrak{R}^* \succeq \mathfrak{R}$ with infinitesimals $\delta \in \bigcap_{1 \leq n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n}) \setminus \{0\}$ non-archimedean, Dedekind incomplete, real-closed field with projection map to 'standard part' on $\bigcup_{n \in \mathbb{N}} (-n, n)$ allows to eliminate typical limit constructions of analysis

→ non-standard analysis, following Abraham Robinson (1960s)