Gödel's Completeness Theorem

the sequent calculus S is sound and complete for FO, i.e., for every FO(σ)-sequent $\Gamma \varphi$ (in the restricted syntax with =, \neg , \lor , \exists):

 $\Gamma \varphi$ derivable in $\mathcal{S}: \Gamma \vdash \varphi$ iff $\Gamma \varphi$ valid: $\Gamma \models \varphi$

strong form (for completeness claim proper):

$\Phi \models \varphi$ implies $\Phi \vdash \varphi$

for all $\Phi \subseteq FO(\sigma), \varphi \in FO(\sigma)$ including infinite sets Φ

Intr.Math.Log.

Winter 12/13

towards the completeness proof

reduction: it suffices to show: $\Phi \not\vdash \bot$ **implies** Φ **satisfiable** i.e., to provide models for consistent sets $\Phi \subseteq FO$

Henkin construction: obtain a model from syntactic material; a term model based on a quotient of an expansion of the term structure \mathfrak{T}_{σ} to a suitable σ -interpretation

preparation: replace Φ by maximally consistent superset with witness terms for existential assertions

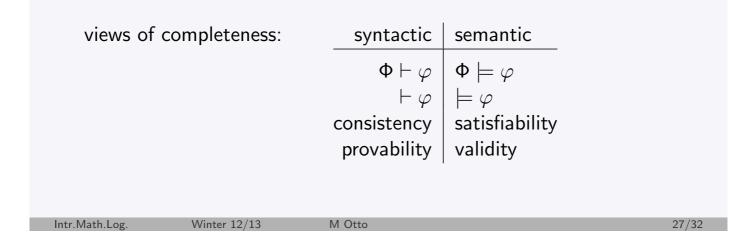
analysis of consistency inspection of the calculus, derived rules, ...

25/32

reduction to consistency/satisfiability

 Φ inconsistent if, for some (indeed, every) φ : $\Phi \vdash \varphi$ and $\Phi \vdash \neg \varphi$ the syntactic counterpart of unsatisfiability

- $\Phi \models \varphi$ iff $\Phi \cup \{\neg \varphi\}$ unsatisfiable
- $\Phi \vdash \varphi$ iff $\Phi \cup \{\neg \varphi\}$ inconsistent



Henkin structures

a σ -interpretation for any $\Phi \subseteq FO(\sigma)$: $\mathfrak{H} = \mathfrak{H}(\Phi) = (\mathsf{T}_{\sigma}/\sim, (\mathsf{f}^{\mathfrak{H}}), (\mathsf{R}^{\mathfrak{H}}), (\mathsf{c}^{\mathfrak{H}}), \beta^{\mathfrak{H}})$

- the relation $t \sim t' :\Leftrightarrow \varphi \vdash t = t'$ is a congruence w.r.t. \mathfrak{T}_{σ} on T_{σ} (cf. equality rules of S)
 - $\stackrel{\rightsquigarrow}{\to} (\mathfrak{T}_{\sigma}/\sim,\beta) = (T_{\sigma}/\sim,(f^{\mathfrak{T}_{\sigma}}/\sim),(c^{\mathfrak{T}_{\sigma}}),(\beta\colon x\mapsto x/\sim))$ a well-defined σ_{fctn} -interpretation
- $R^{\mathfrak{H}} := \{(t_1/\sim, \ldots, t_n/\sim) : \Phi \vdash Rt_1 \ldots t_n\}$ $\rightsquigarrow \mathfrak{H} := (T_{\sigma}/\sim, (f^{\mathfrak{T}_{\sigma}}/\sim), (R^{\mathfrak{H}}), (c^{\mathfrak{T}_{\sigma}}), \beta)$ a well-defined σ -interpretation
- for any Φ , \mathfrak{H} satisfies $\mathfrak{H} \models \alpha \Leftrightarrow \Phi \vdash \alpha$ for all atomic α

Henkin models

for any set $\Phi \subseteq FO(\sigma)$, $\mathfrak{H} = \mathfrak{H}(\Phi)$ satisfies $\mathfrak{H} \models \alpha \Leftrightarrow \Phi \vdash \alpha$ for atomic $\alpha \in FO(\sigma)$ in general, not compatible with \neg, \lor or \exists (!)

for Henkin sets $\Phi \subseteq FO(\sigma)$, $\mathfrak{H} = \mathfrak{H}(\Phi)$ satisfies $\mathfrak{H} \models \varphi \Leftrightarrow \Phi \vdash \varphi$ for all $\varphi \in FO(\sigma)$

Henkin sets $\Phi \subseteq FO(\sigma)$ characterised by

- maximal consistency:
 for all φ ∈ FO(σ), precisely one of Φ ⊢ φ or Φ ⊢ ¬φ
- provision of witnesses:
 for every ∃xφ ∈ FO(σ) ex. some t ∈ T_σ s.t. Φ ⊢ ∃xφ → φ^t/_x

Intr.Math.Log.

Winter 12/13

Henkin sets towards completeness proof

goal: for consistent $\Phi \subseteq FO(\sigma)$ find Henkin set $\hat{\Phi} \supseteq \Phi$, if necessary, in extended signature $\hat{\sigma} \supseteq \sigma$

different cases, of different combinatorial status

countable σ/countable FO(σ):
 maximal consistency through inductive choices

 $Var \setminus free(\Phi)$ infinite: can inductively use 'fresh' variables as witnesses, else: constants or renaming of variables (simple)

• uncountable σ , general case: maximal consistency through AC/Zorn

use new constants as witnesses (chain construction)

29/32

the simple case: countable inductive processes

 $\Phi \subseteq FO(\sigma)$, σ and $FO(\sigma)$ countable, $Var \setminus free(\Phi)$ infinite:

- (1) from consistent Φ to consistent $\hat{\Phi}$ with witnesses: inductively can use variables as witnesses
- (2) from consistent Φ to maximally consistent $\hat{\Phi}$: inductively can add either φ or $\neg \varphi$

crucial finiteness property of consistency:

 $cons(\Phi_i)$ for all $i \in \mathbb{N} \implies cons(\bigcup_{i \in \mathbb{N}} \Phi_i)$

in fact, $cons(\Phi)$ follows from $cons(\Phi_0)$ for all finite $\Phi_0 \subseteq \Phi$ \rightsquigarrow compactness (later)

the general case: Zorn's lemma

- (1) from consistent Φ to consistent $\hat{\Phi}$ with witnesses: inductively use new constants as witnesses in countable chain construction
- (2) from consistent Φ to maximally consistent Φ̂: apply Zorn's lemma to find Φ̂ as ⊆-maximal element among all consistent extensions of Φ

crucial finiteness property of consistency: inductive nature of the partial ordering of consistent sets