Syntax & Semantics

symbols, signatures terms, formulae, sentences

structures their interpretations over structures

formal proof
syntactic derivation
derivability
consistency

consequence
semantic implication
validity
satisfiability

=

towards Gödel's Completeness Theorem

Intr.Math.Log. Winter 12/13 M Otto

Kurt Gödel, 1906-1978

Intr.Math.Log. Winter 12/13 M Otto 18/25

formal proof system: a sequent calculus

sequent: finite string of formulae $\Gamma \varphi$

antecendent $\Gamma \subseteq FO$ finite sequence (unordered, possibly empty)

succedent $\varphi \in FO$

semantics of sequent (validity): $\Gamma \varphi$ valid if $\Gamma \models \varphi$

sequent calculus: rule-based calculus for the syntactic generation of the *derivable sequents*

soundness (correctness): only valid sequents are derivable

completeness (weak form): all valid sequents are derivable

Intr.Math.Log. Winter 12/13 M Otto 19/25

sequent calculus

sequent calculus rules: $\frac{\text{premise sequents}}{\text{conclusion sequent}}$

idea: sequents as proof snapshots;
 sequent rules as legitimate proof steps

examples: $\frac{\Gamma\left(\varphi \wedge \psi\right)}{\Gamma \varphi} \qquad \frac{\Gamma \varphi_1 \varphi \qquad \Gamma \varphi_2 \varphi}{\Gamma(\varphi_1 \vee \varphi_2) \varphi}$

here: a sequent calculus \mathcal{S} for $FO(\sigma)$ with $=,\neg,\lor,\exists$ (without $\land,\to,\leftrightarrow,\forall$)

Intr.Math.Log. Winter 12/13 M Otto 20/25

sequent calculus rules

types of rules:

- rules for assumption/antecedent (weakening)
- ullet propositional rules for \neg, \lor
- quantifier rules for \exists
- equality rules for =

assumption/antecedent rules

(Ass)
$$\frac{\Gamma \varphi}{\Gamma \varphi}$$
 for $\varphi \in \Gamma$ (Ant) $\frac{\Gamma \varphi}{\Gamma' \varphi}$ for $\Gamma \subseteq \Gamma'$

Intr.Math.Log. Winter 12/13 M Otto 21/25

sequent calculus

propositional rules:

(
$$\vee$$
A) $\frac{\Gamma\varphi_1 \varphi}{\Gamma(\varphi_1 \vee \varphi_2) \varphi}$ (\vee S) $\frac{\Gamma \varphi_i}{\Gamma(\varphi_1 \vee \varphi_2)}$ for $i = 1, 2$

(CD)
$$\frac{\Gamma\psi\varphi}{\Gamma\varphi}$$
 $\Gamma\neg\psi\varphi$ (Ctr) $\frac{\Gamma\neg\varphi\psi}{\Gamma\varphi}$

Intr.Math.Log. Winter 12/13 M Otto 22/2!

sequent calculus

quantifier rules:

$$(\exists A) \ \frac{\Gamma \varphi(y/x) \ \psi}{\Gamma \exists x \varphi \ \psi} \qquad (\exists S) \ \frac{\Gamma \ \varphi(t/x)}{\Gamma \ \exists x \varphi}$$
$$y \not \in \text{free}(\Gamma, \exists x \varphi, \psi)$$

side condition in $(\exists A)$ crucial for correctness!

Intr.Math.Log. Winter 12/13 M Otto 23/25

sequent calculus

equality rules

(=)
$$\frac{\Gamma \varphi(t/x)}{\Gamma t = t}$$
 (Subst) $\frac{\Gamma \varphi(t/x)}{\Gamma t = t' \varphi(t'/x)}$

Intr.Math.Log. Winter 12/13 M Otto 24/25