semantics & assignments: coincidence lemma

only the assignment to free variables matters

 $\begin{array}{l} \text{if } \beta \upharpoonright \text{free}(\varphi) = \beta' \upharpoonright \text{free}(\varphi) \\ \text{then } (\mathfrak{A}, \beta) \models \varphi \text{ iff } (\mathfrak{A}, \beta') \models \varphi \end{array} \end{array}$

proof by syntactic induction, based on auxiliary claim for $t \in T_{\sigma}$ and $\beta \upharpoonright \operatorname{var}(t) = \beta' \upharpoonright \operatorname{var}(t)$

in particular, semantics of sentences independent of assignment (!) σ -sentences define classes of σ -structures (\rightsquigarrow elementary classes)

convention: write $\mathfrak{A}, \mathbf{a} \models \varphi$ or $\mathfrak{A} \models \varphi[\mathbf{a}]$ indicating just the assignment \mathbf{a} to variables \mathbf{x} in $\varphi = \varphi(\mathbf{x})$

ntr.Math.Log.	ntr.	Ma	ath.	Log.
---------------	------	----	------	------

Winter 12/13

M Otto

11/16

semantics & isomorphisms: isomorphism lemma

sanity check!

 $\begin{array}{l} \text{if } (\mathfrak{A},\beta) \simeq (\mathfrak{A}',\beta') \\ \text{then } (\mathfrak{A},\beta) \models \varphi \text{ iff } (\mathfrak{A}',\beta') \models \varphi \end{array} \end{array}$

proof by syntactic induction, based on auxiliary claim about compatibility of isomorphisms $f: \mathfrak{A} \simeq \mathfrak{A}'$ with $\mathfrak{I}(t)/\mathfrak{I}'(t)$ for $\mathfrak{I} = (\mathfrak{A}, \beta)/\mathfrak{I}' = (\mathfrak{A}', f \circ \beta)$

in particular, elementary classes are closed under isomorphism (!)

basic semantic notions

consequence relation $\varphi \models \psi$ $\varphi \models \psi$ if, for all interpretations $\Im = (\mathfrak{A}, \beta), \Im \models \varphi$ implies $\Im \models \psi$ **logical equivalence** $\varphi \equiv \psi$ $\varphi \equiv \psi$ if, for all interpretations $\Im = (\mathfrak{A}, \beta), \Im \models \varphi$ iff $\Im \models \psi$ **validity & satisfiability**

 $\varphi \in FO(\sigma)$ satisfiable if $\mathfrak{I} \models \varphi$ for some σ -interpretation \mathfrak{I} $\varphi \in FO(\sigma)$ valid if $\mathfrak{I} \models \varphi$ for every σ -interpretation \mathfrak{I}

Intr.Math.Log. Winter 12/13 M Otto 13/16

elementary and Δ -elementary classes

for sentence $\varphi \in FO_0(\sigma)$: $Mod(\varphi)$ denotes the class (!) of all models of φ $Mod(\varphi) = \{\mathfrak{A} \colon \mathfrak{A} \models \varphi\}$ similarly $Mod(\Phi) := \bigcap \{Mod(\varphi) \colon \varphi \in \Phi\}$ for sets of sentences $\Phi \subseteq FO_0(\sigma)$

elementary classes

a class C of σ -structures is an elementary class if $C = Mod(\varphi)$ for some sentence $\varphi \in FO_0(\sigma)$

Δ -elementary classes

a class C of σ -structures is a Δ -elementary class if $C = Mod(\Phi)$ for some set $\Phi \subseteq FO_0(\sigma)$ of sentences

examples

elementary classes:

groups, rings, fields, ..., boolean algebras, ... graphs, undirected loop-free graphs, ... linear orderings, dense linear orderings, partial orderings, ... equivalence relations, ...

Δ -elementary classes:

infinite sets, ... fields of characteristic 0, algebraically closed fields, ... acyclic graphs, ...

model-theoretic challenge: how to show that some class is *not* elementary or not even Δ -elementary?

M Otto

Intr.Math.Log.

Winter 12/13

substitution

of terms t for variables x, where they occur free in φ (!)

for tuple $\mathbf{x} = (x_1, \dots, x_n)$ of pairwise distinct variables and tuple $\mathbf{t} = (t_1, \dots, t_n)$ of terms $t_i \in T_\sigma$,

the syntactic operation $\operatorname{FO}(\sigma) \longrightarrow \operatorname{FO}(\sigma)$ $\varphi \longmapsto \varphi \frac{\mathbf{t}}{\mathbf{x}}$

is such that, for all σ -interpretations $\mathfrak{I} = (\mathfrak{A}, \beta)$,

$$\mathfrak{I} \models \varphi \frac{\mathbf{t}}{\mathbf{x}} \quad \text{iff} \quad \mathfrak{I} \frac{\mathbf{t}^{\mathfrak{I}}}{\mathbf{x}} \models \varphi \quad (\text{substitution lemma})$$

15/16