Ehrenfeucht-Fraïssé theorem

theorem

for *finite* relational σ and σ -structures $\mathfrak{A}, \mathfrak{B}$ with parameters $\mathbf{a} \in A^n, \mathbf{b} \in B^n$:

 $\mathfrak{A}, \mathbf{a} \simeq_m \mathfrak{B}, \mathbf{b} \quad \Leftrightarrow \quad \mathfrak{A}, \mathbf{a} \equiv_m \mathfrak{B}, \mathbf{b}$

remarks:

- useful for inexpressibility proofs:
 find (𝔅m ∈ 𝔅, 𝔅m ∉ 𝔅)_{m∈ℕ} such that 𝔅m ≃_m 𝔅m,
 to show that 𝔅 is not an elementary class
- unlike compactness, this works to show FO inexpressibility also in restriction to non-elementary classes (e.g., in the class of all finite models, where compactness is unavailable)

Intr.Math.Log.

Winter 12/13

the Ehrenfeucht-Fraïssé method

Karp's theorem

for arbitrary relational σ and σ -structures $\mathfrak{A}, \mathfrak{B}$ with parameters $\mathbf{a} \in A^n, \mathbf{b} \in B^n$:

 $\mathfrak{A}, \mathbf{a} \simeq_{_{\mathrm{part}}} \mathfrak{B}, \mathbf{b} \quad \Leftrightarrow \quad \mathfrak{A}, \mathbf{a} \equiv_{\mathrm{FO}_{\infty}} \mathfrak{B}, \mathbf{b}$

theorem

for countable $\mathfrak{A}, \mathfrak{B}$:

 $\mathfrak{A}, \textbf{a} \simeq_{_{\mathrm{part}}} \mathfrak{B}, \textbf{b} \quad \Leftrightarrow \quad \mathfrak{A}, \textbf{a} \simeq \mathfrak{B}, \textbf{b}$

(obtain isomorphism $\mathfrak{A}, \mathbf{a} \simeq \mathfrak{B}, \mathbf{b}$ as b&f limit)

remark: for finite \mathfrak{A} and \mathfrak{B} , \mathfrak{A} , $\mathbf{a} \simeq \mathfrak{B}$, \mathbf{b} follows from \mathfrak{A} , $\mathbf{a}_m \simeq \mathfrak{B}$, \mathbf{b} for sufficiently large m (why?)

71/76

Expressive power of FO: Lindström's thm

Lindström theorem

FO is maximally expressive among logics that satisfy (some very basic closure properties and)

- compactness property:
 Φ unsatisfiable
 ⇒ some finite Φ₀ ⊆ Φ is unsatisfiable
- Löwenheim−Skolem property:
 Φ countable and satisfiable
 ⇒ Φ is satisfiable in countable models

idea: adjoining to FO any φ that is not FO-expressible, in the presence of compactness and Löwenheim–Skolem, would violate invariance under \simeq : construct $\mathfrak{A} \simeq \mathfrak{B}$ with $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$

Intr.Math.Log.

M Otto

73/76

Lindström thm

the game-based proof idea:

Winter 12/13

for φ that is not expressible in FO find, by compactness,

$$\begin{split} \mathfrak{A} &\equiv \mathfrak{B} & \text{with } \mathfrak{A} \models \varphi \text{ and } \mathfrak{B} \models \neg \varphi, \text{ i.e.,} \\ \mathfrak{A} &\simeq_{\text{fin}} \mathfrak{B} & \text{with } \mathfrak{A} \models \varphi \text{ and } \mathfrak{B} \models \neg \varphi \end{split}$$

```
in FO-encoded environment can boost this, by compactness, to

\mathfrak{A} \simeq_{part} \mathfrak{B} with \mathfrak{A} \models \varphi and \mathfrak{B} \models \neg \varphi
```

```
by Löwenheim–Skolem even obtain countable such \mathfrak{A}, \mathfrak{B}, so that \mathfrak{A} \simeq \mathfrak{B} with \mathfrak{A} \models \varphi and \mathfrak{B} \models \neg \varphi (which is absurd)
```