towards the second incompleteness thm

for recursive $\Phi \subseteq \operatorname{Th}(\mathfrak{N})$ with representations and a fixed total recursive function that enumerates all valid/derivable sequents $\Gamma \varphi$ with $\Gamma \subseteq \Phi$

 $W:=\big\{(n,m)\colon m\text{-th sequent yields }\Phi\vdash\varphi_n\big\}$ recursive, hence repesented w.r.t. Φ by some $\eta(x,y)$

$$\operatorname{prov}_{\Phi}(x) := \exists y \; \eta(x,y)$$
 "provability in Φ " $\operatorname{cons}_{\Phi} := \neg \operatorname{prov}_{\Phi}(\boxed{\neg 0 = 0}]$ "consistency of Φ "

NB: $\operatorname{prov}_{\Phi}(x)$ over-approximates provability in an arbitrary $\mathfrak{A} \models \Phi$, but captures the intended meaning over $\mathfrak{N} \models \Phi$ similarly for $\operatorname{cons}_{\Phi}$

Intr.Math.Log. Winter 12/13 M Otto 63/66

towards the second incompleteness thm

for $\psi(x) := \neg \operatorname{prov}_{\Phi}(x)$ and its fixpoint sentence φ s.t. $\Phi \vdash \varphi \leftrightarrow \neg \operatorname{prov}_{\Phi}(\boxed{\varphi})$ find

- $\mathfrak{N} \models \varphi$ and, by consistency of Φ , $\Phi \not\vdash \varphi$
- in sufficiently strong Φ (like PA), also internally get $\Phi \vdash \operatorname{cons}_{\Phi} \to \neg \operatorname{prov}_{\Phi}(\boxed{\varphi})$ so that consistency of Φ implies $\Phi \not\vdash \operatorname{cons}_{\Phi}$

Gödel's second incompleteness theorem

any sufficiently strong, recursive, consistent axiom system Φ (like ZFC, PA) cannot prove its own consistency: $\Phi \not\vdash \operatorname{cons}_{\Phi}$

Intr.Math.Log. Winter 12/13 M Otto

Löb's axioms for provability (modal style)

(L1)
$$\Phi \vdash \varphi \Rightarrow \Phi \vdash \operatorname{prov}_{\Phi}(\ulcorner \varphi \urcorner)$$

(L1*)
$$\Phi \vdash \varphi \Leftrightarrow \Phi \vdash \operatorname{prov}_{\Phi}(\ulcorner \varphi \urcorner)$$

(L2)
$$\Phi \vdash \left(\operatorname{prov}_{\Phi}\left(\underline{\lceil \varphi \rceil}\right) \land \operatorname{prov}_{\Phi}\left(\underline{\lceil \varphi \rightarrow \psi \rceil}\right)\right) \rightarrow \operatorname{prov}_{\Phi}\left(\underline{\lceil \psi \rceil}\right)$$

(L3)
$$\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\lceil \varphi \rceil}) \to \operatorname{prov}_{\Phi}(\underline{\lceil \operatorname{prov}_{\Phi}(\underline{\lceil \varphi \rceil}) \rceil})$$

- axiomatic characterisation of a reasonable internal encoding of 'provability from Φ'
- satisfied, e.g., by natural formalisation of provability in PA
- (L1),(L2),(L3) and existence of fixpoint formula φ for $\psi(x) := \neg \operatorname{prov}_{\Phi}(x)$ yield both incompleteness theorems

Intr.Math.Log. Winter 12/13 M Otto 65/66

Löb's axioms and the incompleteness theorems

Incompleteness I

assuming (L1) and $\Phi \vdash \varphi \leftrightarrow \neg \operatorname{prov}_{\Phi}(\lceil \varphi \rceil)$:

- Φ consistent $\Rightarrow \Phi \not\vdash \varphi$
- Φ consistent and (L1*) \Rightarrow $\Phi \not\vdash \neg \varphi$

Incompleteness II

assuming (L1),(L2),(L3), $\Phi \vdash \varphi \leftrightarrow \neg \operatorname{prov}_{\Phi}(\boxed{\varphi})$, get for $\operatorname{cons}_{\Phi} := \neg \operatorname{prov}_{\Phi}(\boxed{\neg 0 = 0})$:

• Φ consistent $\Rightarrow \Phi \not\vdash cons_{\Phi}$

Intr.Math.Log. Winter 12/13 M Otto 66/66