

a toy example form mathematical practice

groups are structures of the form $\mathfrak{G} = (G, \circ^{\mathfrak{G}}, e^{\mathfrak{G}})$ satisfying

(G1) associativity of $e^{\mathfrak{G}}$

- (G2) $e^{\mathfrak{G}}$ right neutral for $\circ^{\mathfrak{G}}$
- (G3) existence of right inverses for $\circ^{\mathfrak{G}}$

some provable consequences:

(Thm1) every right inverse is a left inverse

(Thm2) the right neutral is a left neutral

- (Thm3) uniqueness of neutral element
- (Thm4) uniqueness of inverses

 σ -structures

and basic universal algebra

$$\mathfrak{A} = \left(\mathsf{A}, (f^{\mathfrak{A}})_{c \in \operatorname{fctn}(\sigma)}, (\mathbb{R}^{\mathfrak{A}})_{c \in \operatorname{rel}(\sigma)}, (c^{\mathfrak{A}})_{c \in \operatorname{const}(\sigma)} \right)$$

with universe/domain $A \neq \emptyset$

and interpretations

 $\mathfrak{I}^{\mathfrak{A}}(f) = f^{\mathfrak{A}} \colon A^n \to A$ for *n*-ary function symbol f $\mathfrak{I}^{\mathfrak{A}}(R) = R^{\mathfrak{A}} \subseteq A^n$ for *n*-ary relation symbol R $\mathfrak{I}^{\mathfrak{A}}(c) = c^{\mathfrak{A}} \in A$ for constant symbol c

supporting natural notions from universal algebra:

substructures/expansions reducts/expansions homomorphisms, isomorphisms, automorphisms, ...

Winter 12/13

Intr.Math.Log.

M Otto

3/15

syntax: σ -terms

inductive definition:

 T_{σ} , the set of σ -terms (over Var), is the smallest set s.t. (i) $\operatorname{Var} \subseteq T_{\sigma}$ (ii) $\operatorname{const}(\sigma) \subseteq T_{\sigma}$ (iii) for *n*-ary $f \in \operatorname{fctn}(\sigma)$: if $t_1, \ldots, t_n \in T_{\sigma}$, then $f t_1 \ldots t_n \in T_{\sigma}$

calculus:

(T1)
$$\frac{1}{x}$$
 $x \in Var$
(T2) $\frac{1}{c}$ $c \in const(\sigma)$
(T3) $\frac{t_1,...,t_n}{ft_1...t_n}$ $f \in fctn(\sigma)$ *n*-ary

σ -terms and free term structures

 $\rightarrow\,$ interpretations of $\sigma\text{-terms}$ in $\sigma\text{-structures}$ via homomorphisms

Intr.Math.Log.	Winter 12/13	M Otto	5/15

FO(σ): σ -formulae

calculus:

$$\begin{array}{cccc} (F1) & \hline t, t' \in T_{\sigma} \\ (F2) & \hline Rt_{1}...t_{n} \\ (F3) & \hline \varphi \\ \hline \neg \varphi \\ (F4) & \hline \frac{\varphi_{1}, \varphi_{2}}{(\varphi_{1} * \varphi_{2})} \\ (F5) & \hline \varphi \\ (F5) & \hline \varphi \\ \hline Qx\varphi \\ \end{array} \begin{array}{c} t, t' \in T_{\sigma} \\ R \in \operatorname{rel}(\sigma) \text{ n-ary, } t_{i} \in T_{\sigma} \\ R \in \operatorname{rel}(\sigma) \text{ n-ary, } t_{i} \in T_{\sigma} \\ \hline formulae \\ formu$$

syntactic induction

... refers to induction w.r.t. rules of some calculus (inductive process of generation) and

- proves an assertion A(o)
 for all objects o generated by the calculus, or
- defines new objects/entities/relationships ...
 for all objects o generated by the calculus

e.g., to prove A(o) for all o, show that each rule $\frac{o_1, \ldots, o_m}{o}$ of the calculus is such that $A(o_1), \ldots A(o_m)$ implies A(o)

idea: very low-level finitistic combinatorics should suffice at this 'foundational' stage

Intr.Math.Log.

Winter 12/13

7/15

examples of proofs/definitions by syntactic induction

on terms $t \in T_{\sigma}$:

unique parsing for all $t \in T_{\sigma}$, $\operatorname{var}: T_{\sigma} \to \mathcal{P}(\operatorname{Var}), \ldots$

interpretation map $\mathfrak{I}^{\mathfrak{A}}_{eta} \colon \mathcal{T}_{\sigma} o \mathcal{A}$

on formulae $\varphi \in FO(\sigma)$:

unique parsing for all $\varphi \in FO(\sigma)$, free: $FO(\sigma) \rightarrow \mathcal{P}(Var)$, ...

satisfaction relation $\mathfrak{A}, \beta \models \varphi$

assignments, and interpretation of terms

assignment $\beta \colon \operatorname{Var} \to \mathsf{A}$

(temporary) interpretation of variables (as if constants)

 $\sigma\text{-interpretation} \quad \mathfrak{I}^{\mathfrak{A}}_{\beta} \quad (\text{or } (\mathfrak{A},\beta) = (A,\mathfrak{I}^{\mathfrak{A}},\beta) = (A,\mathfrak{I}^{\mathfrak{A}}_{\beta}))$

interpretation of all symbols in σ and all $x \in Var$

interpretation of terms $t \in T_{\sigma}$ over σ -interpretation $\mathfrak{I} = \mathfrak{I}_{\beta}^{\mathfrak{A}}$:

> $\mathfrak{I}: T_{\sigma} \longrightarrow A$ $t \longmapsto \mathfrak{I}(t) = t^{\mathfrak{I}}$

the natural extension of $\mathfrak{I} \upharpoonright (const(\sigma) \cup Var)$ to a homomorphism !

Intr.Math.Log.

Winter 12/13

interpretation of formulae: satisfaction relation

M Otto

satisfaction relation \models

between σ -interpretations $\mathfrak{I} = \mathfrak{I}^{\mathfrak{A}}_{\beta} = (\mathfrak{A}, \beta)$ and $\varphi \in \mathrm{FO}(\sigma)$

defined by syntactic induction over φ , for fixed \mathfrak{A} and all assignments β simultaneously:

 $(\mathsf{F1}) \quad (\mathfrak{A},\beta)\models t=t' \quad \text{if} \quad \mathfrak{I}^{\mathfrak{A}}_{\beta}(t)=\mathfrak{I}^{\mathfrak{A}}_{\beta}(t')$

(F2)
$$(\mathfrak{A},\beta) \models Rt_1 \dots t_n$$
 if $(\mathfrak{I}^{\mathfrak{A}}_{\beta}(t_1),\dots,\mathfrak{I}^{\mathfrak{A}}_{\beta}(t_n)) \in R^{\mathfrak{A}}$

(F3/4) ... the obvious extensional boolean clauses

(F5) $(\mathfrak{A},\beta) \models \exists x \varphi$ if $(\mathfrak{A},\beta\frac{a}{x}) \models \varphi$ for some $a \in A$ $(\mathfrak{A},\beta) \models \forall x \varphi$ if $(\mathfrak{A},\beta\frac{a}{x}) \models \varphi$ for all $a \in A$ 9/15