
Introduction to Mathematical Logic Martin Otto
Stephane Le Roux

Winter 2012/13

Solution Hints for Exercises No.9

Exercise 1 R-programs over alphabet {0, 1}. For easier readability we use a GOTO
construct, which is easiliy implemented by means of an “empty” branching condition of
the form
IF R1 = 2 THEN ` ELSE ` OR `.

(a) P1 : R2 := R−11 using registers R1, R2, R3. The first part of this program moves
the content of R1 in reverse to both R2 and R3; the second part then moves the
content of R3 in reverse back to R1.

0 IF R1 = 2 THEN 9 ELSE 1 OR 5
1 R1 := R1 − 0
2 R2 := R2 + 0
3 R3 := R3 + 0
4 GOTO 0
5 R1 := R1 − 1
6 R2 := R2 + 1
7 R3 := R3 + 1
8 GOTO 0
9 IF R3 = 2 THEN 16 ELSE 10 OR 13
10 R3 := R3 − 0
11 R1 := R1 + 0
12 GOTO 9
13 R3 := R3 − 1
14 R1 := R1 + 1
15 GOTO 9
16 STOP

(b) P2 : R2 = R1? using registers R1, R2, R3. The main loop (lines 0 − 9) reduces
the register contents of both R1 and R2 by one if the last letters agree; or exits to
termination with empty R3 via line 11 if they do not agree; or exists to termination
with non-empty R3 via line 10, if both have been reduced to 2.

0 IF R1 = 2 THEN 1 ELSE 2 OR 6
1 IF R2 = 2 THEN 10 ELSE 11 OR 11
2 R1 := R1 − 0
3 IF R2 = 2 THEN 11 ELSE 4 OR 11
4 R2 := R2 − 0
5 GOTO 0
6 R1 := R1 − 1
7 IF R2 = 2 THEN 11 ELSE 11 OR 8
8 R2 := R2 − 1
9 GOTO 0

10 R3 := R3 + 1
11 STOP

Remark: a nicer version of this would either clean up R1 and R2 or restore these
inputs.

Exercise 2 The following program assembles the reverse of the desired output in
register R2, leaving R1 empty. [It should be combined with a program as in Exercise 1 (a)
to reverse copy the contents of R2 back into R1.]

R3 = 2 or R3 = 1 serves as a marker: R3 = 1 until the first 0 from R1 is processed.

0 R3 := R3 + 1 [initialize R3]
1 IF R3 = 2 THEN 2 ELSE 9 OR 9 [only R3 = 2 or R3 = 1 occurs]
2 IF R1 = 2 THEN 17 ELSE 3 OR 6 [branching on R1, while R3 = 2]
3 R1 := R1 − 0 [if R1 = . . . 0, R3 = 2]
4 R2 := R2 + 0
5 GOTO 1
6 R1 := R1 − 1 [if R1 = . . . 1, R3 = 2]
7 R2 := R2 + 1
8 GOTO 1
9 IF R1 = 2 THEN 11 ELSE 10 OR 14 [branching on R1, while R3 = 1]
10 R1 := R1 − 0 [if R1 = . . . 0, R3 = 1]
11 R2 := R2 + 1
12 R3 := R3 − 1
13 GOTO 1
14 R1 := R1 − 1 [if R1 = . . . 1, R3 = 1]
15 R2 := R2 + 0
16 GOTO 1
17 STOP

Exercise 3 (i) ⇒ (ii). Assume W is decidable and infinite. The unique monotone
function f : N→ W (mapping n to the n + 1-st element of W w.r.t. <lex) is surjective.
It is also computable: to determine f(n) one needs to run a decision procedure for W
successively stepping through w ∈ A∗ in lexicographic order, until one gets the n+ 1-st
positive answer, and then output the corresponding w.

(ii) ⇒ (i). W.l.o.g. consider an infinite W with f as given. The following algorithm
then decides whether w ∈ W : compute successive values f(n) for n = 0, 1, 2, . . . until
either f(n) = w (answer: w ∈ W) or w <lex f(n) (answer: w 6∈ W).

Exercise 4 (cf. Lemma 4.1.2) For (i) ⇒ (ii) one just needs to modify the tail end of a
program P that decides W so that instead of terminating with R1 = 2 say, it diverges.
For this it suffices to replace the last line “m STOP” by the lines

m IF R1 = 2 THEN m ELSE m+ 1 OR . . . OR m+ 1
m+ 1 STOP

The new programm P ′ terminates on input u iff P terminates with nonemptyR1 on input

u, and it diverges if P terminates with empty R1 on input u. So W = {u : u
P ′
−→ STOP}

is r.e.
W is treated analogously.

For (ii) ⇒ (i) we assume P1 and P0 are such that W = {w ∈ A∗ : w P1−→ STOP} and

W = {w ∈ A∗ : w P0−→ STOP}. Note that on each input w ∈ A∗, precisely one of P1

or P0 terminates. W.l.o.g. assume that P0 and P1 use disjoint sets of registers (also for
their input), and that R1 and R2 is used by neither.

Now organise P such that an initial part (taking the first m lines) serves to copy the
register content of its input register R1 to the two input registers of P1 and P0.

For the rest of P we want it to simulate P0 and P1 in an interleaving fashion, executing
appropriate lines of P0 and of P1 in alternating manner, until one of them stops. For
this we use pieces of program (one or two lines of instructions each) labelled by pairs
of line numbers with a marker on either the first or the second component: (`0, `1) and
(`0, `1).

If line ` of Pi is a register update command α, then let

(`, `1) :

{
α
GOTO (`+ 1, `1)

(`0, `) :

{
α
GOTO (`0, `+ 1)

If line ` of Pi is a conditional branching command α, let α′(`1) be the result of
replacing each line address `′ in α by (`′, `1); similarly let α′′(`0) the result of replacing
each line address `′ in α by (`0, `

′). Then put

(`, `1) : α′(`1) (`0, `) : α′′(`0)

If line ` of Pi is the STOP line, put

(`, `1) :

{
R2 := R2 + a
GOTO L

(`0, `) : GOTO L

Finally make L the new STOP line of P .
With a suitable renumbering of the new program lines and transcription of the GOTO

command (see above), P is turned into a proper R-program with input register R1 and
output register R2 for deciding W : P terminates on all inputs u, and terminates with
empty output register R2 iff u 6∈ W (viz., if P1 terminates on u).

Exercise 5 (a) There is no general implication since the languages ∅ and A∗ are both
decidable.

(b) For example, assume that both L1 and L2 are enumerable by programs P1 and P2,
respectively. Then L1 ∪ L2 is also enumerable. Indeed take the input and feed it
to both programs running in parallel. As soon as one of the program stops (thus
acknowledging membership of the input), stop the other program. For L1 ∩L2 we
would have to wait that both programs stop.

(c) First solution: there are only countably many enumerable languages (since pro-
grams are countably many) but there are uncountably many languages L such
that L1 ⊆ L ⊆ L2. Second solution, more constructive: In order to build such
an undecidable language, consider a numbering of all the words in L2\L1 and a
numbering of all the register programs, e.g., over the binary alphabet. Define L as
the union of L1 plus the words in L2\L1 whose numbers correspond to a program
that halts. The halting problem is reducible to membership in L, which is then
undecidable.

Exercise 6 Following the hint, we want to describe the operation of P on register
content u = (u1, u2, . . . , uk) in terms of u′ = (u1#u2 · · ·#uk,2). For the initial con-
figuration on input u ∈ A∗, we transform the initial register content (u,2, . . . ,2) into
u′0 = (u## · · ·#,2) by a string of k − 1 lines with the command R1 := R1 + #.

A command Ri := Ri± a in P now has to be simulated by the following subroutine:
reverse-copy the top of the content of R1 down through the first (k − i) occurrences of
from the top (do nothing if i = k) so that the register content of P ’s register Ri is
at the top of register R1. Then operate as required on the remaining register content in
R1 (Ri := Ri ± a becomes R1 := R1 ± a). Finally reverse-copy the content of R2 back
onto R1.

An IF Ri = 2 THEN n1 ELSE . . . OR n` similarly needs to be prefixed by a reverse-
copy operation that brings the register content of P ’s register Ri to the top of register R1.
The actual branching is then performed on IF R1 = 2 THEN n′1 ELSE . . . OR n′` OR n

′
1

(note that the ELSE-selection is one longer than before, with a last OR for the case
that the register contents ends in #, which means that P ’s Ri was empty. Each one of
the target lines n′1, . . . , n

′
` in P needs to be prefixed by a reverse-copy procedure that

restores the upper layers of R1.
NB: unlike the reverse-copy operation of Exercise 1 (a), we here do not want to keep

the source register unchanged, but really remove letter after letter in the source register
as we append it to the target register. This is easily done without any auxiliary registers.

