MARTIN OTTO STEPHANE LE ROUX Winter 2012/13

Solution Hints for Exercises No.8

- **Exercise 1** (i) Consider $(\mathbb{N}, <)$ the structure of the ordered natural numbers and replace it with (\mathbb{N}, E) , where $nEm :\Leftrightarrow (n < m \lor m < n)$. This constitutes an infinite connected graph. Do the same with $(\mathbb{N}', <)$ a non-standard model for (the axioms of) the naturals. This (\mathbb{N}', E) constitutes an infinite disconnected graph, since there is not finite chain $0Ex_0Ex_1E \dots Ex_kEn$ when n is an infinite non-standard natural (otherwise n would be finite). Recall that $(\mathbb{N}, <)$ and $(\mathbb{N}', <)$ are elementary equivalent, and so are (\mathbb{N}, E) and (\mathbb{N}', E) for similar reasons. Now assume that the class of the connected graphs were Δ -elementary, described by a set of sentences Φ . So (\mathbb{N}, E) , as a connected graph, would be a model for it. Then (\mathbb{N}', E) , as elementary equivalent to (\mathbb{N}, E) , would also be a model for Φ , contradiction since (\mathbb{N}', E) is disconnected. Similarly, the class of the disconnected graphs is not Δ -elementary.
 - (ii) Similar to (i), use the ordered field of the real numbers and a corresponding nonstandard model.
 - (iii) An abelian group (G, +) is divisible if for all positive $n \in \mathbb{N}$ and $x \in G$, there exists $y \in G$ such that x = ny. For all positive n, let $\varphi_n := \forall x \exists y (x = ny)$. The abelian group axioms together with the set of formulas $\{\varphi_n \mid n \in \mathbb{N} \{0\}\}$ characterise the divisible groups exactly, which are therefore Δ -elementary.

Exercise 2 (i) \Rightarrow (ii). Let $0^{\mathfrak{A}} \in X$, $X \subseteq A$ closed under $S^{\mathfrak{A}}$. Suppose $X \subsetneq A$. Then there is, by (i), a minimal $a \in A \setminus X$. $a \neq 0^{\mathfrak{A}}$ as $0^{\mathfrak{A}} \in X$ by assumption, so $a = S^{\mathfrak{A}}(b)$ for some $b \in A$ (image($S^{\mathfrak{A}}$) = $A \setminus \{0^{\mathfrak{A}}\}$ by assumption). Since $S^{\mathfrak{A}}(b) = a$ implies $b <^{\mathfrak{A}} a$, minimality of a implies that $b \in X$. But $b \in X$ and $a = S^{\mathfrak{A}}(b) \notin X$ is impossible, as X is closed under $S^{\mathfrak{A}}$.

(ii) \Rightarrow (iii). Let $X \subseteq A$ be the set of those $a \in A$ for which $[0, a]^{\mathfrak{A}} := \{b \in A : b <^{\mathfrak{A}} a \text{ or } b = a\}$ is finite. Clearly $0 \in X$: $[0, 0]^{\mathfrak{A}} = \{0^{\mathfrak{A}}\}$ as $0^{\mathfrak{A}}$ is $<^{\mathfrak{A}}$ -minimal. X is also closed under $S^{\mathfrak{A}}$: $[0, S^{\mathfrak{A}}(a)]^{\mathfrak{A}} = [0, a]^{\mathfrak{A}} \cup \{S^{\mathfrak{A}}(a)\}$ as $S^{\mathfrak{A}}(a)$ is the immediate successor of a. Hence X = A by (ii).

(iii) \Rightarrow (iv). Define $h: A \to \mathbb{N}$ through $h(a) := |[0, a]^{\mathfrak{A}}| - 1$. One shows that h is a bijection (injectivity follows as $a <^{\mathfrak{A}} a'$ implies $[0, a]^{\mathfrak{A}} \subsetneq [0, a']^{\mathfrak{A}}$) and that $h(\mathsf{S}^{\mathfrak{A}}(a)) = h(a) + 1$. Compatibility of h with < and 0 are easily checked.

 $(iv) \Rightarrow (i),(ii),(iii)$ are obvious.

Exercise 3 We write S for the successor function that maps $x \in \omega$ to $Sx := x \cup \{x\}$ (all operations and defined notions in terms of a model of ZFC – we work "within ZFC"). A set *a* is inductive if $\emptyset \in a$ and *a* is closed under S.

For (a) show that the subset $a := \{x \in \omega : "x \text{ transitive"}\} \subseteq \text{ is inductive, hence equal to } \omega$.

 $\emptyset \in a$: \emptyset is transitive (as it has no elements).

Closure under S: let $z \in \omega$ be transitive. Consider $y \in Sz = z \cup \{z\}$, we need to show that $y \subseteq Sz$. If $y \in z$, then by transitivity of z we get $y \subseteq z$, whence $y \subseteq z \cup \{z\} = Sz$; if y = z, then $y = z \subseteq Sz$ is trivial.

Transitivity of \in over ω : if $x \in y \in z \in \omega$, then transitivity of z implies that $y \subseteq z$, whence $x \in z$ follows.

For (b) similarly show that $a := \{x \in \omega : \neg x \in x\}$ is inductive.

 $\emptyset \in a: \ \emptyset \not\in \emptyset.$

Closure under S: let $z \in \omega$, $z \notin z$. Assume $Sz \in Sz$. Then $z \cup \{z\} = z$ (which would imply $\{z\} \subseteq z$ and thus also $z \in z$) or $z \cup \{z\} \in z$ (which by transitivity of z would imply $z \cup \{z\} \subseteq z$ and thus $z \in z$); hence both cases contradict the inductive hypothesis that $z \notin z$.

For (c) we show that $a := \{x \in \omega : \forall y (y \in \omega \to (x \in y \lor x = y \lor y \in x))\}$ is inductive.

For $\emptyset \in a$, show that the set $b := \{x \in \omega : x = \emptyset \lor \emptyset \in x\}$ is inductive (this is easy). Closure of a under S: assume that $\forall y(y \in \omega \to (z \in y \lor z = y \lor y \in z))$ and show that

$$\forall y \big(y \in \omega \to (\mathsf{S}z \in y \lor \mathsf{S}z = y \lor y \in \mathsf{S}z) \big).$$

Consider some $y \in \omega$. From the assumption, we have $z \in y \lor z = y \lor y \in z$. If $y \in z$ or y = z, then $y \in z \cup \{z\} = Sz$. To cover the case of $z \in y$ we show by induction that for all $z, y \in \omega$:

$$z \in y \to (\mathsf{S}z = y \lor \mathsf{S}z \in y).$$

For this we show that the set $b := \{y \in \omega : z \in y \to (Sz = y \lor Sz \in y)\}$ is inductive: $\emptyset \in b$ is trivial; b is closed under S: let $y \in b$ and assume $z \in Sy = y \cup \{y\}$. Then z = y and Sy = Sz, or $z \in y$ and hence (as $y \in b$) Sz = Sy, or $Sz \in y \in Sy$ and $Sz \in Sy$ by transitivity. So in both cases $y \cup \{y\} \in b$.

Exercise 4

- (a) Assuming $x_0 \in x_1 \in \cdots \in x_{n-1} \in x_0$, repeated application of (PAIR) and (union) yields the set $x = \{x_0, \ldots, x_{n-1}\}$. [For every *i*, we get $\{x_i\} = \{x_i, x_i\}$ by (PAIR), then inductively $\{x_0, \ldots, x_i, x_{i+1}\} = \{x_0, \ldots, x_i\} \cup \{x_{i+1}\}$ by (union).] Now show that *x* violates (FOUND): each element $x_i \in x$ has non-empty intersection with *x*: for $i = 0, x_{n-1} \in x_i \cap x$; for $0 < i < n, x_{i-1} \in x_i \cap x$. For injectivity of $x \mapsto x \cup \{x\}$: suppose $x \cup \{x\} = y \cup \{y\}$ and $x \neq y$; then $x \in y \cup \{y\}$ implies $x \in y$ and $y \in x \cup \{x\}$ implies $y \in x$, contradiction.
- (b) Assume that $\neg \varphi(x)$ for some transitive x. Consider $w := \{z \in x : \neg \varphi(z)\} \subseteq x$. By the assumption about $\varphi, w \neq \emptyset$. By (FOUND), the set w has an \in -minimal member u for which:

 $-u \in x \text{ and } \neg \varphi(u) \text{ (as } u \in w);$

 $-u \cap w = \emptyset$ (\in -minimality in w).

By transitivity of $x, u \in x$ implies $u \subseteq x$. As $u \subseteq x, u \cap w = \emptyset$ implies $\forall z (z \in u \rightarrow \varphi(z))$. This, however, implies $\varphi(u)$ by the assumption about φ , a contradiction.

Exercise 5

(a) $\forall x (x \neq \emptyset \land \forall z (z \in x \to z \neq \emptyset) \to \exists y (\forall z (z \in y \leftrightarrow \varphi(z, y))))$ where $\varphi(z, y)$ says that z is the graph of a function f from x to $\bigcup x$ such that $f(u) \in u$ for all $u \in x$. Non-emptiness of the product is easily stated, and can be shown on the basis of (AC): look at a choice set for the set $\{u\} \times u : u \in x\}$.

- (b) for all x, no function is an injection of P(x) into x, or equivalently (why?): no function is a surjection from x onto P(x). Follows (in ZFC) from the usual diagonalisation trick: assuming $f: x \to P(x)$ is a surjection, find that $d = \{u \in x : u \notin f(u)\} \subseteq x$ cannot be in the image of f, since d = f(u) implies $u \in d$ iff $u \notin f(u) = d$.
- (c) The set of all sequences of natural numbers is the set of all functions from ω to ω ; each such function is a subset of $\omega \times \omega$, hence an element of $P(P(P(\omega)))$, so the set (!) of all natural number sequences can be isolated by separation as a subset of $P(P(P(\omega)))$. That it is not countable means there is no surjection from ω onto this set. This follows by diagonalisation (as usual) or as a special case of (b), since $P(\omega)$ is bijectively related to the set of natural sequences with range $2 = \{0, 1\}$ (characteristic functions).