Martin Otto Stephane Le Roux
 Winter 2012/13

Solution Hints for Exercises No. 8

Exercise 1 (i) Consider ($\mathbb{N},<$) the structure of the ordered natural numbers and replace it with (\mathbb{N}, E), where $n E m: \Leftrightarrow(n<m \vee m<n)$. This constitutes an infinite connected graph. Do the same with $\left(\mathbb{N}^{\prime},<\right)$ a non-standard model for (the axioms of) the naturals. This (\mathbb{N}^{\prime}, E) constitutes an infinite disconnected graph, since there is not finite chain $0 E x_{0} E x_{1} E \ldots E x_{k} E n$ when n is an infinite nonstandard natural (otherwise n would be finite). Recall that $(\mathbb{N},<)$ and ($\mathbb{N}^{\prime},<$) are elementary equivalent, and so are (\mathbb{N}, E) and $\left(\mathbb{N}^{\prime}, E\right)$ for similar reasons. Now assume that the class of the connected graphs were Δ-elementary, described by a set of sentences Φ. So (\mathbb{N}, E), as a connected graph, would be a model for it. Then $\left(\mathbb{N}^{\prime}, E\right)$, as elementary equivalent to (\mathbb{N}, E), would also be a model for Φ, contradiction since $\left(\mathbb{N}^{\prime}, E\right)$ is disconnected. Similarly, the class of the disconnected graphs is not Δ-elementary.
(ii) Similar to (i), use the ordered field of the real numbers and a corresponding nonstandard model.
(iii) An abelian group $(G,+)$ is divisible if for all positive $n \in \mathbb{N}$ and $x \in G$, there exists $y \in G$ such that $x=n y$. For all positive n, let $\varphi_{n}:=\forall x \exists y(x=n y)$. The abelian group axioms together with the set of formulas $\left\{\varphi_{n} \mid n \in \mathbb{N}-\{0\}\right\}$ characterise the divisible groups exactly, which are therefore Δ-elementary.

Exercise 2 (i) \Rightarrow (ii). Let $0^{\mathfrak{A}} \in X, X \subseteq A$ closed under $\mathrm{S}^{\mathfrak{A}}$. Suppose $X \varsubsetneqq A$. Then there is, by (i), a minimal $a \in A \backslash X . a \neq 0^{\mathfrak{2}}$ as $0^{\mathfrak{A}} \in X$ by assumption, so $a=\mathrm{S}^{\mathfrak{A}}(b)$ for some $b \in A$ (image $\left(S^{\mathfrak{A}}\right)=A \backslash\left\{0^{\mathfrak{d}}\right\}$ by assumption). Since $S^{\mathfrak{A}}(b)=a$ implies $b<^{\mathfrak{A}} a$, minimality of a implies that $b \in X$. But $b \in X$ and $a=S^{\mathfrak{2}}(b) \notin X$ is impossible, as X is closed under $\mathrm{S}^{\mathfrak{2}}$.
(ii) \Rightarrow (iii). Let $X \subseteq A$ be the set of those $a \in A$ for which $[0, a]^{\mathfrak{A}}:=\left\{b \in A: b<^{\mathfrak{A}}\right.$ a or $b=a\}$ is finite. Clearly $0 \in X:[0,0]^{\mathfrak{d}}=\left\{0^{\mathfrak{d}}\right\}$ as $0^{\mathfrak{d}}$ is $<^{\mathfrak{d}}$-minimal. X is also closed under $S^{\mathfrak{A}}:\left[0, S^{\mathfrak{2}}(a)\right]^{\mathfrak{A}}=[0, a]^{\mathfrak{A}} \cup\left\{\mathrm{S}^{\mathfrak{2}}(a)\right\}$ as $\mathrm{S}^{\mathfrak{2}}(a)$ is the immediate successor of a. Hence $X=A$ by (ii).
(iii) \Rightarrow (iv). Define $h: A \rightarrow \mathbb{N}$ through $h(a):=\left|[0, a]^{\mathfrak{d}}\right|-1$. One shows that h is a bijection (injectivity follows as $a<^{\mathfrak{A}} a^{\prime}$ implies $[0, a]^{\mathfrak{A}} \ddagger\left[0, a^{\prime}\right]^{\mathfrak{A}}$) and that $h\left(\mathcal{S}^{\mathfrak{A}}(a)\right)=$ $h(a)+1$. Compatibility of h with $<$ and 0 are easily checked.
(iv) \Rightarrow (i),(ii),(iii) are obvious.

Exercise 3 We write S for the successor function that maps $x \in \omega$ to $\mathrm{S} x:=x \cup\{x\}$ (all operations and defined notions in terms of a model of ZFC - we work "within ZFC"). A set a is inductive if $\emptyset \in a$ and a is closed under S .
For (a) show that the subset $a:=\{x \in \omega$: " x transitive" $\} \subseteq$ is inductive, hence equal to ω.
$\emptyset \in a: \emptyset$ is transitive (as it has no elements).

Closure under S: let $z \in \omega$ be transitive. Consider $y \in \mathrm{~S} z=z \cup\{z\}$, we need to show that $y \subseteq \mathrm{~S} z$. If $y \in z$, then by transitivity of z we get $y \subseteq z$, whence $y \subseteq z \cup\{z\}=\mathrm{S} z$; if $y=z$, then $y=z \subseteq \mathrm{~S} z$ is trivial.

Transitivity of \in over ω : if $x \in y \in z \in \omega$, then transitivity of z implies that $y \subseteq z$, whence $x \in z$ follows.
For (b) similarly show that $a:=\{x \in \omega: \neg x \in x\}$ is inductive.
$\emptyset \in a: \emptyset \notin \emptyset$.
Closure under S : let $z \in \omega, z \notin z$. Assume $\mathrm{S} z \in \mathrm{~S} z$. Then $z \cup\{z\}=z$ (which would imply $\{z\} \subseteq z$ and thus also $z \in z$) or $z \cup\{z\} \in z$ (which by transitivity of z would imply $z \cup\{z\} \subseteq z$ and thus $z \in z$); hence both cases contradict the inductive hypothesis that $z \notin z$.
For (c) we show that $a:=\{x \in \omega: \forall y(y \in \omega \rightarrow(x \in y \vee x=y \vee y \in x))\}$ is inductive.
For $\emptyset \in a$, show that the set $b:=\{x \in \omega: x=\emptyset \vee \emptyset \in x\}$ is inductive (this is easy).
Closure of a under S: assume that $\forall y(y \in \omega \rightarrow(z \in y \vee z=y \vee y \in z))$ and show that

$$
\forall y(y \in \omega \rightarrow(\mathrm{~S} z \in y \vee \mathrm{~S} z=y \vee y \in \mathrm{~S} z))
$$

Consider some $y \in \omega$. From the assumption, we have $z \in y \vee z=y \vee y \in z$. If $y \in z$ or $y=z$, then $y \in z \cup\{z\}=\mathrm{S} z$. To cover the case of $z \in y$ we show by induction that for all $z, y \in \omega$:

$$
z \in y \rightarrow(\mathrm{~S} z=y \vee \mathrm{~S} z \in y)
$$

For this we show that the set $b:=\{y \in \omega: z \in y \rightarrow(\mathrm{~S} z=y \vee \mathrm{~S} z \in y)\}$ is inductive:
$\emptyset \in b$ is trivial; b is closed under S : let $y \in b$ and assume $z \in \mathrm{~S} y=y \cup\{y\}$. Then $z=y$ and $\mathrm{S} y=\mathrm{S} z$, or $z \in y$ and hence (as $y \in b) \mathrm{S} z=\mathrm{S} y$, or $\mathrm{S} z \in y \in \mathrm{~S} y$ and $\mathrm{S} z \in \mathrm{~S} y$ by transitivity. So in both cases $y \cup\{y\} \in b$.

Exercise 4

(a) Assuming $x_{0} \in x_{1} \in \cdots \in x_{n-1} \in x_{0}$, repeated application of (PAIR) and (union) yields the set $x=\left\{x_{0}, \ldots, x_{n-1}\right\}$. [For every i, we get $\left\{x_{i}\right\}=\left\{x_{i}, x_{i}\right\}$ by (PAIR), then inductively $\left\{x_{0}, \ldots, x_{i}, x_{i+1}\right\}=\left\{x_{0}, \ldots, x_{i}\right\} \cup\left\{x_{i+1}\right\}$ by (union).]
Now show that x violates (FOUND): each element $x_{i} \in x$ has non-empty intersection with x : for $i=0, x_{n-1} \in x_{i} \cap x$; for $0<i<n, x_{i-1} \in x_{i} \cap x$.
For injectivity of $x \mapsto x \cup\{x\}$: suppose $x \cup\{x\}=y \cup\{y\}$ and $x \neq y$; then $x \in y \cup\{y\}$ implies $x \in y$ and $y \in x \cup\{x\}$ implies $y \in x$, contradiction.
(b) Assume that $\neg \varphi(x)$ for some transitive x. Consider $w:=\{z \in x: \neg \varphi(z)\} \subseteq x$.

By the assumption about $\varphi, w \neq \emptyset$. By (FOUND), the set w has an \in-minimal member u for which:
$-u \in x$ and $\neg \varphi(u)$ (as $u \in w$);
$-u \cap w=\emptyset(\epsilon$-minimality in $w)$.
By transitivity of $x, u \in x$ implies $u \subseteq x$. As $u \subseteq x, u \cap w=\emptyset$ implies $\forall z(z \in u \rightarrow$ $\varphi(z))$. This, however, implies $\varphi(u)$ by the assumption about φ, a contradiction.

Exercise 5

(a) $\forall x(x \neq \emptyset \wedge \forall z(z \in x \rightarrow z \neq \emptyset) \rightarrow \exists y(\forall z(z \in y \leftrightarrow \varphi(z, y))))$ where $\varphi(z, y)$ says that z is the graph of a function f from x to $\bigcup x$ such that $f(u) \in u$ for all $u \in x$. Non-emptiness of the product is easily stated, and can be shown on the basis of (AC): look at a choice set for the set $\{\{u\} \times u: u \in x\}$.
(b) for all x, no function is an injection of $P(x)$ into x, or equivalently (why?): no function is a surjection from x onto $P(x)$. Follows (in ZFC) from the usual diagonalisation trick: assuming $f: x \rightarrow P(x)$ is a surjection, find that $d=\{u \in$ $x: u \notin f(u)\} \subseteq x$ cannot be in the image of f, since $d=f(u)$ implies $u \in d$ iff $u \notin f(u)=d$.
(c) The set of all sequences of natural numbers is the set of all functions from ω to ω; each such function is a subset of $\omega \times \omega$, hence an element of $P(P(P(\omega))$), so the set (!) of all natural number sequences can be isolated by separation as a subset of $P(P(P(\omega)))$. That it is not countable means there is no surjection from ω onto this set. This follows by diagonalisation (as usual) or as a special case of (b), since $P(\omega)$ is bijectively related to the set of natural sequences with range $2=\{0,1\}$ (characteristic functions).

