Martin Otto Stephane Le Roux
 Winter 2012/13

Solution Hints for Exercises No. 7

Exercise 1

(a) Clearly the members of any infinite descending sequence $a_{0}>a_{1}>a_{2}>\cdots$ form a set without minimal element. Conversely, any subset $A^{\prime} \subseteq A$ without minimal element would allow us to choose inductively a descending sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ in A^{\prime} : since $a_{i} \in A^{\prime}$ is not minmal, there is some $a_{i+1} \in A^{\prime}$ for which $a_{i+1}<{ }^{\mathfrak{A}} a_{i}$.
(b) Assume $\Phi \subseteq \mathrm{FO}(\{<\})$ axiomatised the class $\mathcal{W O}$. Consider $\Psi:=\Phi \cup\left\{v_{n+1}<\right.$ $\left.v_{n}: n \in \mathbb{N}\right\}$. Any finite subset of Ψ is satisfiable in a sufficiently large finite (well)ordering, hence consistent. So Ψ as a whole is consistent, and therefore satisfiable by the Completeness Theorem. But no model $\mathfrak{A}, \beta \models \Psi$ can be well-ordered, as $\left(\beta\left(v_{i}\right)\right)_{i \in \mathbb{N}}$ is a descending sequence. Contradiction.

Exercise 2 (a) Let both \mathcal{C} and $\overline{\mathcal{C}}$ be Δ-elementary: $\mathcal{C}=\operatorname{Mod}(\Phi)$ and $\overline{\mathcal{C}}=\operatorname{Mod}(\Psi)$ for suitable sets $\Phi, \Psi \subseteq \mathrm{FO}(\sigma)$. Then $\Phi \cup \Psi$ is unsatisfiable as $\mathcal{C} \cap \overline{\mathcal{C}}=\emptyset$. By compactness, there is a finite unsatisfiable subset of $\Phi \cup \Psi$. Let this subset be $\Phi_{0} \cup \Psi_{0}$, where $\Phi_{0} \subseteq \Phi$ and $\Psi_{0} \subseteq \Psi$ are finite. It follows that $\mathcal{C}=\operatorname{Mod}\left(\Phi_{0}\right)$ and $\overline{\mathcal{C}}=\operatorname{Mod}\left(\Psi_{0}\right)$. E.g., for \mathcal{C} :
$\mathcal{C} \subseteq \operatorname{Mod}\left(\Phi_{0}\right)$ is obvious. Suppose $\mathfrak{A} \notin \mathcal{C}$. Then $\mathfrak{A} \in \overline{\mathcal{C}}$ and hence $\mathfrak{A} \models \Psi$. Thus $\mathfrak{A} \models \Psi_{0}$ and as $\Phi_{0} \cup \Psi_{0}$ is not satisfiable, it follows that $\mathfrak{A} \not \vDash \Phi_{0}$. Hence $\mathcal{C}=\operatorname{Mod}\left(\Phi_{0}\right)$.
(b) From the assumptions, $\Phi:=\{\neg \psi: \psi \in \Psi\}$ is not satisfiable. By compactness, some finite subset $\Phi_{0} \subseteq \Phi$ is unsatisfiable. Let $\Psi_{0}:=\left\{\psi \in \Psi: \neg \psi \in \Phi_{0}\right\}$. Unsatisfiability of Φ_{0} directly implies that any σ-structure \mathfrak{A} must satisfy at least one $\psi \in \Psi_{0}$.
Aside: the topological space which is here shown to be compact is the space of all complete $\mathrm{FO}(\sigma)$-theories, with basic open sets $O_{\varphi}:=\{T: \varphi \in T\}$ for sentences $\varphi \in \mathrm{FO}_{0}(\sigma)$; we have shown that any cover by basic open sets $\left(O_{\psi}\right)_{\psi \in \Psi}$ admits a finite sub-cover.

Exercise 3 (a) E.g., in the standard model of arithmetic: $\mathfrak{N} \vDash \exists x(\underline{n}<x)$ for all $n \in \mathbb{N}$.
(b) Let $\Phi=\operatorname{Th}(\mathfrak{A}) \cup\left\{\varphi_{i}(x): i \in \mathbb{N}\right\}$. Then Φ is finitely satisfiable (in \mathfrak{A} with a suitable assignment for x), hence satisfiable by compactness.
For any model $\left(\mathfrak{A}^{\prime}, \beta\right) \models \Phi$ we have: $\mathfrak{A}^{\prime} \equiv \mathfrak{A}\left(\right.$ as $\left.\mathfrak{A}^{\prime} \models \operatorname{Th}(\mathfrak{A})\right)$ and $\mathfrak{A}^{\prime} \models \varphi_{i}[\beta(x)]$ for all $i \in \mathbb{N}$.

Exercise 4 Suppose first that F is continuous in 0 . Then in (\Re, F), for all $n, 1 \leqslant n \in \mathbb{N}$, there is $m, 1 \leqslant m \in \mathbb{N}$, such that $(\mathfrak{R}, F) \models \varphi_{n, m}$ where

$$
\varphi_{n, m}=\forall x(\underline{m}|x|<1 \rightarrow \underline{n}|F x|<1) .
$$

Here $\underline{k}|z|<1$ is used as an abbeviation for the FO formula

$$
\chi_{k}(z):=z=0 \vee(0<z \wedge \underline{k} z<1) \vee\left(z<0 \wedge \exists z^{\prime}\left(z+z^{\prime}=0 \wedge \underline{k} z^{\prime}<1\right)\right)
$$

which says (in \mathfrak{R}) that $|z|<1 / k$.
Therefore $\left(\mathfrak{R}^{*}, F^{*}\right) \models \varphi_{n, m}$ for exactly the same pairs of $n, m \in \mathbb{N}$. If $\delta \in \mathbb{R}^{*}$ is in $N(0)$, then $\underline{m}|\delta|<1$ is true for all $m \in \mathbb{N}$, and hence $\underline{n}|F \delta|<1$ is true for all $n \geqslant 1$. Therefore $F^{*}(\delta) \in N(0)$.

If F is not continuous in 0 , then there is some $n \geqslant 1$ such that

$$
(\mathfrak{R}, F) \models \forall z \forall z^{\prime}\left(\left(z^{\prime}<0 \wedge 0<z\right) \rightarrow\left(\exists x\left(z^{\prime}<x \wedge x<z \wedge \neg \underline{n}|F x|<1\right)\right)\right) .
$$

Using the truth of this sentence in $\left(\mathfrak{R}^{*}, F^{*}\right)$, we may instantiate z and z^{\prime} e.g. with δ and $-\delta$ for some positive infinitesimal δ. Then $(-\delta, \delta) \subseteq N(0)$ in \mathfrak{R}^{*}, and the above sentence says that $F^{*}[(-\delta, \delta)] \nsubseteq N(0)$.

