Solution Hints for Exercises No.6

Exercise 1

(a) Let $\mathfrak{A}, \beta \models \Phi, \Phi \subseteq FO(\sigma)$ consisting of equality-free universal formulae. Expand \mathfrak{T}_{σ} (which interprets only the constants and functions in σ) to a σ -structure $\mathfrak{T} := \mathfrak{T}_{\sigma}(\mathfrak{A})$ by the following stipulation (for an *n*-ary relation symbol $R \in \sigma$):

$$(t_1,\ldots,t_n) \in R^{\mathfrak{T}} \iff \mathfrak{A}, \beta \models Rt_1\ldots t_n.$$

Let β_0 be the assignment $\beta_0: v_i \mapsto v_i$ in \mathfrak{T}_{σ} . It is then straightforward to show, by induction on formula rank, that for all equality-free universal formulae φ :

$$\mathfrak{A},\beta\models\varphi \Rightarrow \mathfrak{T},\beta_0\models\varphi.$$

In particular $\mathfrak{T}, \beta_0 \models \Phi$.

(b) $\Phi \vdash \varphi \Rightarrow \mathfrak{H}, \beta^{\mathfrak{H}} \models \varphi$ is obvious for atomic and negated atomic relational formulae. The induction step for \vee is based on the observation that $\Phi \vdash (\varphi_1 \lor \varphi_2)$ implies $\Phi \vdash \varphi_i$ for at least one of i = 1, 2, since Φ is maximally consistent (w.r.t. equality-free, universal formulae).

The induction step for \wedge similarly uses that $\Phi \vdash \neg(\neg \varphi_1 \lor \neg \varphi_2)$ implies that $\Phi \vdash \varphi_i$ for i = 1, 2. The following derivation establishes this:

$$\begin{array}{ll} \Gamma \neg (\neg \varphi_1 \lor \neg \varphi_2) & \text{premise} \\ \Gamma \neg \varphi_i \neg \varphi_i & (\text{Ass}) \\ \Gamma \neg \varphi_i (\neg \varphi_1 \lor \neg \varphi_2) & (\lor \text{S}) \\ \Gamma \neg \varphi_i \neg (\neg \varphi_1 \lor \neg \varphi_2) & (\text{Ant}) \text{ on line 1} \\ \Gamma \varphi_i & (\text{Ctr}) \text{ on previous two lines} \end{array}$$

The induction step for \forall : assuming the claim for all formulae of lower (quantifier) rank than $\forall x\varphi$, we show the claim for $\forall x\varphi = \neg \exists x \neg \varphi$:

 $\Phi \vdash \neg \exists x \neg \varphi$ implies $\Phi \vdash \varphi \frac{t}{x}$ for all $t \in T_{\sigma}$, by the derived rule of \forall -instantiation. Therefore, $\mathfrak{H} \models \varphi \frac{t}{x}$ for all t by the induction hypothesis. Hence (by the substitution lemma) $\mathfrak{H}, \beta \frac{\mathfrak{h} t^{\beta \mathfrak{h}}}{x} \models \varphi$ for all t, and therefore $\mathfrak{H} \models \forall x \varphi$.

Remark: These arguments go through for universal, but not necessarily equalityfree formulae in the Henkin model $\mathfrak{H}(\Phi)$ based on the quotient w.r.t. derivable term equalities.

Exercise 2

(a) (i) If Φ is inconsistent w.r.t. σ' then there are derivations Γ ⊢ φ and Γ ⊢ ¬φ in the sequent calculus over FO(σ'), for some finite Γ ⊆ Φ. Let z ∈ Var such that z does not occur anywhere in these two derivations (as the entire derivations are finite, so is the set of variable symbols that occur).
We claim that syntactic replacement of c by z throughout these derivations

We claim that syntactic replacement of c by z throughout these derivations turns these into derivations in the sequent calculus over FO(σ). One checks that this replacement turns each rule of $S_{\sigma'}$ into a rule of S_{σ} . That z does not occur anywhere in the old derivation implies that no application of the rule (\exists A) causes problems in this transformation. So Φ would also be inconsistent w.r.t. FO(σ).

- (ii) By the same argument as in (a), based on the corresponding arguments in the lecture where we used a fresh variable symbol for a witness. If $\Phi \cup \{\exists x\varphi \rightarrow \varphi_x^c\}$ is inconsistent, then $\Phi \vdash \neg \varphi_x^c$ and $\Phi \vdash \exists x\varphi$. Therefore, as in (a) and over σ , $\Phi_0 \vdash \exists x\varphi$ and $\Phi_0 \vdash \neg \varphi_x^z$ for some suitable finite $\Phi_0 \subseteq \Phi$ and variable z which in particular does not occur free in Φ_0 or $\exists x\varphi$. As in the argument in the lecture, it follows that also $\Phi_0 \vdash \neg \exists x\varphi$, so Φ would have to be inconsistent.
- (iii) Let $\hat{\sigma} = \sigma \cup \{c_i : i \in \mathbb{N}\}$ for new constant symbols c_i . Let $(\varphi_i)_{i \in \mathbb{N}}$ be an enumeration of FO $(\hat{\sigma})$, and define a chain $\Phi = \Phi_0 \subseteq \Phi_1 \subseteq \cdots$ by induction on $i \in \mathbb{N}$ with

$$\Phi_{i+1} := \begin{cases} \Phi_i \cup \{ \exists x \varphi \to \varphi \frac{c_j}{x} \} & \text{if } \varphi_i = \exists x \varphi \\ \Phi_i & \text{else} \end{cases}$$

where j is chosen as the least index j such that such that c_j does not occur in Φ_i or φ_i . Note that this is always possible as Φ_0 has no occurrences of new constants, and each Φ_i therefore only has finitely many. $\hat{\Phi} := \bigcup_i \Phi_i$ has witnesses and is consistent.

(b) Let $\operatorname{cons}_{\sigma}(\Phi)$. Then, by completeness, there is a model (σ -structure with assignment) $(\mathfrak{A}, \beta) \models \Phi$. Expand \mathfrak{A} to a σ' -structure \mathfrak{A}' by choosing arbitrary interpretations for the symbols in $\sigma' \setminus \sigma$. By the coincidence lemma, $(\mathfrak{A}', \beta) \models \Phi$, so that $\operatorname{sat}_{\sigma'}(\Phi)$. By correctness (soundness) we conclude that $\operatorname{cons}_{\sigma'}(\Phi)$ (no contradiction can be derivable in the sequent claculus for σ' either).

Exercise 3

- (a) Let \mathfrak{A} be a σ -structure, $\varphi(\mathbf{x}, y) \in FO(\sigma)$. We may interpret the new function symbol $f := f_{\varphi \mathbf{x} y}$ as an *n*-ary function over A as follows. For $\mathbf{a} \in D := \{\mathbf{a} \in A^n \colon \mathfrak{A}, \mathbf{a} \models \exists y \varphi\}$, let $f(\mathbf{a}) \in \{b \in A \colon \mathfrak{A}, \mathbf{a}b \models \varphi\}$; for $\mathbf{a} \notin D$ let $f(\mathbf{a})$ be any element of A. [Note that the existence of such a function $f \colon A^n \to A$ relies on the axiom of choice.]
- (b) By induction on $\psi(\mathbf{x}) \in FO(\sigma)$, we find $\hat{\psi}(\mathbf{x})$ such that $Sk_0(\sigma) \models \forall \mathbf{x}(\psi \leftrightarrow \hat{\psi})$. Consider the \exists -step, for $\psi(\mathbf{x}) = \exists y \varphi(\mathbf{x}, y)$: clearly $\hat{\psi}(\mathbf{x}) := \varphi \frac{f_{\varphi \mathbf{x} \mathbf{y}} \mathbf{x}}{y}$ is as required.

Exercise 4

- (a) The set of all (graphs of) partial choice functions for $(A_i)_{i \in I}$ with the inclusion relation is closed under unions of chains, hence inductive. Any maximal partial choice function must be total, as otherwise there would be a proper extension.
- (b) If $(A_i)_{i \in I}$ with non-empty A_i , by a) there exists $f : I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for all *i*. So *f* is actually in the Cartesian product $\bigotimes_{i \in I} A_i$.
- (c) Consider the set $S := \{R \colon R \subseteq A \times A \text{ well-orders some subset } B \subseteq A\}$ with the relation \prec for which $R \prec R'$ if R' is a proper end-extension of R: if R well-orders B, then R' well-orders some $B' \supseteq B$ in such a manner that all elements of $B' \setminus B$ are larger than all elements of B in sense of R. One checks that S is closed under unions of chains, hence is inductive [convince yourself with an example that plain

inclusion between well-orderings of subsets would not be good enough for this!]. Any maximal element of (S, \prec) must be a well-ordering of all of A, as any missing point could just be appended to obtain a larger well-ordering.