Solution Hints Exercises No.4

Exercise 1

(a)
$$\Gamma$$
 $(\varphi \to \psi)$ (modus ponens) Γ $\varphi \to \psi$ (contr 2) Γ ψ Γ ψ

(b)
$$\frac{\Gamma \neg \neg \varphi}{\Gamma \varphi}$$
 (NN 1) $\frac{\Gamma \varphi}{\Gamma \neg \neg \varphi}$

(*) is the derived sequent $\Gamma \neg \neg \psi \psi$, for $\psi = \neg \varphi$. This sequent (a variant of the first double negation rule) is easily derived from $\Gamma \neg \psi \neg \psi$ through an application of the first contrapositive rule.

Exercise 2

(a) For \wedge , the following are derivable (and semantically adequate):

$$\frac{\Gamma \varphi_1 \varphi_2 \quad \psi}{\Gamma(\varphi_1 \wedge \varphi_2) \, \psi} \quad (\wedge A) \qquad \frac{\Gamma \quad \varphi_1}{\Gamma \quad \varphi_2} \quad (\wedge S)$$

$$\frac{\Gamma \quad \varphi_1}{\Gamma \quad \varphi_2} \quad (\wedge S)$$

(b) For \rightarrow the following are derivable (and semantically adequate):

$$\frac{\Gamma\psi \quad \chi}{\Gamma \neg \varphi \quad \chi} \qquad (\rightarrow A) \qquad \frac{\Gamma\varphi \quad \psi}{\Gamma \left(\varphi \rightarrow \psi\right)} \qquad (\rightarrow S)$$

Exercise 3

$$\frac{\Gamma \neg \exists x \neg \varphi}{\Gamma \varphi_{\overline{x}}^{\underline{t}}} =
\begin{array}{cccc}
1 & \Gamma \neg \exists x \neg \varphi & \text{premise} \\
2 & \Gamma \neg \varphi_{\overline{x}}^{\underline{t}} \neg \varphi_{\overline{x}}^{\underline{t}} & (\text{Ass}) \\
3 & \Gamma \neg \varphi_{\overline{x}}^{\underline{t}} \exists x \neg \varphi & (\exists \text{ S}) \\
4 & \Gamma \neg \varphi_{\overline{x}}^{\underline{t}} \neg \exists x \neg \varphi & (\text{Ant}) \text{ on } 1 \\
5 & \Gamma \varphi_{\overline{x}}^{\underline{t}} & (\text{Ctr}) \text{ on } 3, 4
\end{array}$$

Exercise 4 (*) refers to use of the derived rule from the previous exercise; let

$$\gamma = \neg \exists x \neg \exists y \ x = fy$$

be the antecedent of the desired sequent.