Martin Otto Stephane Le Roux
 Winter 2012/13

Solution Hints for Exercises No. 3

Exercise 1 (a) (i) Let $\sigma:=\left\{P_{f}, P_{v},+, \cdot, 0_{f}, 1_{f}, \oplus, \otimes, 0_{v}\right\}$ where P_{f} and P_{v} are unary relation symbols (intended for the number domain and vector domain),,$+ \cdot$, \oplus and \otimes are binary function symbols, and $0_{f}, 1_{f}$ and 0_{v} are constant symbols. The closure conditions on the number domain are:

- $\forall x \forall y\left(\left(P_{f} x \wedge P_{f} y\right) \rightarrow P_{f}(x \cdot y)\right)$
- $\forall x \forall y\left(\left(P_{f} x \wedge P_{f} y\right) \rightarrow P_{f}(x+y)\right)$
- $P_{f} 0_{f}$ and $P_{f} 1_{f}$

Besides, one uses 'relativisations' of the field axioms to the number domain, in which existential quantification $\exists x \ldots$ is replaced by $\exists x\left(P_{f} x \wedge \ldots\right)$ and universal quantification $\forall x \ldots$ by $\forall x\left(P_{f} x \rightarrow \ldots\right)$.
[NB: this process can be defined systematically by induction; question: what is the semantic criterion for the relationship between φ and its relativisation φ^{\prime} to some unary predicate P that does not occur in φ ?]

The vector space axioms are similarly obtained by suitable relativisations of quantifications to P_{f} and to P_{v}, as appropriate.
[NB: we do not care how the operations behave on arguments of inappropriate sorts!]
(ii) Let $\sigma:=\left\{\oplus, 0_{v}, f_{\lambda_{1}}, \ldots, f_{\lambda_{p}}\right\}$, where $\lambda_{1}, \ldots, \lambda_{p}$ are the elements of the field \mathbb{F}_{p}. As above, \oplus is interpreted as vector addition and 0_{v} as its neutral element. Each f_{λ}, a unary function symbol, is interpreted as multiplication of a vector by the field element λ. Then a typical vector space axiom like 'associativity' for scalar multiplication looks like this:
$\forall x f_{\lambda}\left(f_{\mu}(x)\right)=f_{\lambda \mu}(x)$ [one for every pair of field elements λ, μ] or, a distributivity axiom, like this:
$\forall x \forall y\left(f_{\lambda}(x \oplus y)=f_{\lambda}(x) \oplus f_{\lambda}(y)\right)$ [one for every field element λ]
(b) (i) Let the notation $x \leqslant y$ stand for the formula $x=y \vee x<y$ and let $\delta(x, y, z):=$ $0 \leqslant z \wedge((x \leqslant y \wedge y \leqslant x+z) \vee(y \leqslant x \wedge x \leqslant y+z))$, which says that $|x-y| \leqslant z$. Then continuity in 0 is expressed by

$$
\forall z\left(0<z \rightarrow \exists z^{\prime}\left(0<z^{\prime} \wedge \forall x\left(\delta\left(x, 0, z^{\prime}\right) \rightarrow \delta(f x, f 0, z)\right)\right)\right)
$$

Exercise 2 The inductive definition of a negation normal form map may be given as follows, based on our full FO syntax with $\rightarrow, \leftrightarrow$ for completeness. We simultaneously define the values for the two functions $f(\varphi)=\operatorname{nnf}(\varphi)$ and $g(\varphi)=\operatorname{nnf}(\neg \varphi)$.
(F1), (F2): $\begin{aligned} & f(\varphi):=\varphi \\ & g(\varphi):=\neg \varphi\end{aligned}$ for atomic φ.
(F3):

$$
\begin{aligned}
& f(\neg \varphi):=g(\varphi) \\
& g(\neg \varphi):=f(\varphi) .
\end{aligned}
$$

(F4) \vee and \wedge :

$$
\begin{aligned}
& f\left(\varphi_{1} * \varphi_{2}\right):=f\left(\varphi_{1}\right) * f\left(\varphi_{2}\right) \quad \text { for } *=\vee, \wedge \text { and } \bar{\vee}:=\wedge, \bar{\wedge}:=\vee . \\
& g\left(\varphi_{1} * \varphi_{2}\right):=g\left(\varphi_{1}\right) \bar{*} g\left(\varphi_{2}\right) \quad .
\end{aligned}
$$

$(\mathrm{F} 4) \rightarrow: \quad \begin{array}{ll}f\left(\varphi_{1} \rightarrow \varphi_{2}\right) & :=g\left(\varphi_{1}\right) \vee f\left(\varphi_{2}\right) \\ g\left(\varphi_{1} \rightarrow \varphi_{2}\right) & :=f\left(\varphi_{1}\right) \wedge g\left(\varphi_{2}\right) .\end{array}$
(F4) $\leftrightarrow: \quad f\left(\varphi_{1} \leftrightarrow \varphi_{2}\right)=f\left(\varphi_{1} \leftrightarrow \varphi_{2}\right):=\left(f\left(\varphi_{1}\right) \wedge f\left(\varphi_{2}\right)\right) \vee\left(g\left(\varphi_{1}\right) \wedge g\left(\varphi_{2}\right)\right)$.

$$
\begin{align*}
& f(Q x \varphi):=Q x f(\varphi) \text { for } Q=\forall, \exists \text { and } \bar{\forall}:=\exists, \bar{\exists}:=\forall . \tag{F5}\\
& g(Q x \varphi):=\bar{Q} x g(\varphi)
\end{align*}
$$

The inductive proof of the adequacy of these stipulations is then straightforward.
Exercise 3 The claim is shown by syntactic induction on the formula part φ of the game position. We call a position in which $\mathrm{V}(\mathrm{R})$ has a winning strategy a winning position for $V(R)$. Along with the proof of the claim as stated we may establish that a position (φ, β) is winning for R iff $(\mathfrak{A}, \beta) \not \models \varphi$ iff it is not winning for V .

If φ is atomic or negated atomic, then the game has already terminated, and R and V have lost or won (have a trivial winning strategy) in accordance with the claim.

Consider a game position (φ, β) with $\varphi=\left(\varphi_{1} \vee \varphi_{2}\right)$. Then it is V's move. Thus (φ, β) is winning for V iff at least one of the target positions she can move to is winning for her, i.e., by the inductive hypothesis, $\operatorname{iff}(\mathfrak{A}, \beta) \models \varphi_{i}$ for at least one of $i=1,2$, hnece iff $(\mathfrak{A}, \beta) \models \varphi$.

The dual cases (\vee-position for R , or \wedge-position for V) are treated analogously.
Consider a game position (φ, β) with $\varphi=\exists x \varphi$. Then it is V's move. Thus (φ, β) is winning for V iff at least one of the target positions she can move to is winning for her, i.e., iff for at least one $a \in A,\left(\varphi, \beta \frac{a}{x}\right)$ is winning for her, iff, by the inductive hypothesis, $\left(\mathfrak{A}, \beta \frac{a}{x}\right) \models \varphi$ for at least one $a \in A$, and hence iff $(\mathfrak{A}, \beta) \models \varphi$.

Again, the dual cases (\exists-position for R , or \forall-position for V) are treated analogously.
If formulae are not assumed to be in nnf: in positions $(\neg \varphi, \beta)$, let V and R swap roles and then proceed from position (φ, β).

Formally, one may add a tag \wp to each position that tells which of the two players, I or II say, currently acts as the verifier. Then the rules for moves as given just preserve \wp, while we have a forced move from $(\neg \varphi, \beta, \mathrm{I})$ to $(\varphi, \beta, \mathrm{II})$ and from $(\neg \varphi, \beta, \mathrm{II})$ to $(\varphi, \beta, \mathrm{I})$. Terminating positions are now of the form (φ, β, \wp) for atomic φ, and \wp wins iff $\mathfrak{A}, \beta \models \varphi$.

Then player I has a winning strategy in the game starting in $(\varphi, \beta, \mathrm{I})$ on \mathfrak{A} iff $\mathfrak{A}, \beta \models$ φ.

