Solution Hints for Exercises No.3

- **Exercise 1** (a) (i) Let $\sigma := \{P_f, P_v, +, \cdot, 0_f, 1_f, \oplus, \otimes, 0_v\}$ where P_f and P_v are unary relation symbols (intended for the number domain and vector domain), $+, \cdot, \oplus$ and \otimes are binary function symbols, and 0_f , 1_f and 0_v are constant symbols. The closure conditions on the number domain are:
 - $\forall x \forall y ((P_f x \land P_f y) \to P_f (x \cdot y))$
 - $\forall x \forall y ((P_f x \land P_f y) \to P_f (x+y))$
 - $P_f 0_f$ and $P_f 1_f$

Besides, one uses 'relativisations' of the field axioms to the number domain, in which existential quantification $\exists x...$ is replaced by $\exists x(P_f x \land ...)$ and universal quantification $\forall x...$ by $\forall x(P_f x \rightarrow ...)$.

[NB: this process can be defined systematically by induction; question: what is the semantic criterion for the relationship between φ and its relativisation φ' to some unary predicate P that does not occur in φ ?]

The vector space axioms are similarly obtained by suitable relativisations of quantifications to P_f and to P_v , as appropriate.

[NB: we do not care how the operations behave on arguments of inappropriate sorts!]

(ii) Let $\sigma := \{\oplus, 0_v, f_{\lambda_1}, \dots, f_{\lambda_p}\}$, where $\lambda_1, \dots, \lambda_p$ are the elements of the field \mathbb{F}_p . As above, \oplus is interpreted as vector addition and 0_v as its neutral element. Each f_{λ} , a unary function symbol, is interpreted as multiplication of a vector by the field element λ . Then a typical vector space axiom like 'associativity' for scalar multiplication looks like this:

 $\forall x f_{\lambda}(f_{\mu}(x)) = f_{\lambda\mu}(x)$ [one for every pair of field elements λ, μ]

or, a distributivity axiom, like this:

 $\forall x \forall y (f_{\lambda}(x \oplus y) = f_{\lambda}(x) \oplus f_{\lambda}(y)) \text{ [one for every field element } \lambda]$

(b) (i) Let the notation $x \leq y$ stand for the formula $x = y \lor x < y$ and let $\delta(x, y, z) := 0 \leq z \land ((x \leq y \land y \leq x+z) \lor (y \leq x \land x \leq y+z))$, which says that $|x-y| \leq z$. Then continuity in 0 is expressed by $\forall z(0 < z \rightarrow \exists z'(0 < z' \land \forall x(\delta(x, 0, z') \rightarrow \delta(fx, f0, z))))$

Exercise 2 The inductive definition of a negation normal form map may be given as follows, based on our full FO syntax with \rightarrow , \leftrightarrow for completeness. We simultaneously define the values for the two functions $f(\varphi) = \operatorname{nnf}(\varphi)$ and $g(\varphi) = \operatorname{nnf}(\neg \varphi)$.

(F1), (F2):
$$\begin{array}{l} f(\varphi) := \varphi \\ g(\varphi) := \neg \varphi \end{array} \text{ for atomic } \varphi.$$

(F3):
$$\begin{array}{l} f(\neg \varphi) := g(\varphi) \\ g(\neg \varphi) := f(\varphi). \end{array}$$

$$\begin{array}{ll} (\mathrm{F4}) \lor \mathrm{and} \land : & \begin{array}{l} f(\varphi_1 \ast \varphi_2) := f(\varphi_1) \ast f(\varphi_2) \\ g(\varphi_1 \ast \varphi_2) := g(\varphi_1) \bar{\ast} g(\varphi_2) \end{array} \text{ for } \ast = \lor, \land \mathrm{and} \ \bar{\lor} := \land, \bar{\land} := \lor. \\ (\mathrm{F4}) \rightarrow : & \begin{array}{l} f(\varphi_1 \rightarrow \varphi_2) := g(\varphi_1) \lor f(\varphi_2) \\ g(\varphi_1 \rightarrow \varphi_2) := f(\varphi_1) \land g(\varphi_2). \end{array} \\ (\mathrm{F4}) \leftrightarrow : & f(\varphi_1 \leftrightarrow \varphi_2) = f(\varphi_1 \leftrightarrow \varphi_2) := (f(\varphi_1) \land f(\varphi_2)) \lor (g(\varphi_1) \land g(\varphi_2)). \\ (\mathrm{F5}) & \begin{array}{l} f(Qx\varphi) := Qx \ f(\varphi) \\ g(Qx\varphi) := \bar{Q}x \ g(\varphi) \end{array} \text{ for } Q = \forall, \exists \text{ and } \bar{\forall} := \exists, \bar{\exists} := \forall. \end{array} \\ \text{The inductive proof of the adequacy of these stipulations is then straightforward. } \end{array}$$

Exercise 3 The claim is shown by syntactic induction on the formula part φ of the game position. We call a position in which V (R) has a winning strategy a *winning position for V (R)*. Along with the proof of the claim as stated we may establish that a position (φ, β) is winning for R iff $(\mathfrak{A}, \beta) \not\models \varphi$ iff it is not winning for V.

If φ is atomic or negated atomic, then the game has already terminated, and R and V have lost or won (have a trivial winning strategy) in accordance with the claim.

Consider a game position (φ, β) with $\varphi = (\varphi_1 \vee \varphi_2)$. Then it is V's move. Thus (φ, β) is winning for V iff at least one of the target positions she can move to is winning for her, i.e., by the inductive hypothesis, iff $(\mathfrak{A}, \beta) \models \varphi_i$ for at least one of i = 1, 2, hnece iff $(\mathfrak{A}, \beta) \models \varphi$.

The dual cases (\lor -position for R, or \land -position for V) are treated analogously.

Consider a game position (φ, β) with $\varphi = \exists x \varphi$. Then it is V's move. Thus (φ, β) is winning for V iff at least one of the target positions she can move to is winning for her, i.e., iff for at least one $a \in A$, $(\varphi, \beta \frac{a}{x})$ is winning for her, iff, by the inductive hypothesis, $(\mathfrak{A}, \beta \frac{a}{x}) \models \varphi$ for at least one $a \in A$, and hence iff $(\mathfrak{A}, \beta) \models \varphi$.

Again, the dual cases (\exists -position for R, or \forall -position for V) are treated analogously. If formulae are not assumed to be in nnf: in positions ($\neg \varphi, \beta$), let V and R swap roles and then proceed from position (φ, β).

Formally, one may add a tag \wp to each position that tells which of the two players, I or II say, currently acts as the verifier. Then the rules for moves as given just preserve \wp , while we have a forced move from $(\neg \varphi, \beta, I)$ to (φ, β, II) and from $(\neg \varphi, \beta, II)$ to (φ, β, I) . Terminating positions are now of the form (φ, β, \wp) for atomic φ , and \wp wins iff $\mathfrak{A}, \beta \models \varphi$.

Then player I has a winning strategy in the game starting in (φ, β, I) on \mathfrak{A} iff $\mathfrak{A}, \beta \models \varphi$.