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Solution Hints for Exercises No.3

Exercise 1 (a) (i) Let σ := {Pf , Pv,+, ·, 0f , 1f ,⊕,⊗, 0v} where Pf and Pv are unary
relation symbols (intended for the number domain and vector domain), +, ·,
⊕ and ⊗ are binary function symbols, and 0f , 1f and 0v are constant symbols.
The closure conditions on the number domain are:

• ∀x∀y((Pfx ∧ Pfy)→ Pf (x · y))

• ∀x∀y((Pfx ∧ Pfy)→ Pf (x+ y))

• Pf0f and Pf1f

Besides, one uses ‘relativisations’ of the field axioms to the number domain, in
which existential quantification ∃x... is replaced by ∃x(Pfx∧...) and universal
quantification ∀x... by ∀x(Pfx→ ...).

[NB: this process can be defined systematically by induction; question: what
is the semantic criterion for the relationship between ϕ and its relativisation
ϕ′ to some unary predicate P that does not occur in ϕ ?]

The vector space axioms are similarly obtained by suitable relativisations of
quantifications to Pf and to Pv, as appropriate.

[NB: we do not care how the operations behave on arguments of inappropriate
sorts!]

(ii) Let σ := {⊕, 0v, fλ1 , . . . , fλp}, where λ1, . . . , λp are the elements of the field
Fp. As above, ⊕ is interpreted as vector addition and 0v as its neutral element.
Each fλ, a unary function symbol, is interpreted as multiplication of a vector
by the field element λ. Then a typical vector space axiom like ‘associativity’
for scalar multiplication looks like this:

∀xfλ(fµ(x)) = fλµ(x) [one for every pair of field elements λ, µ]

or, a distributivity axiom, like this:

∀x∀y(fλ(x⊕ y) = fλ(x)⊕ fλ(y)) [one for every field element λ]

(b) (i) Let the notation x 6 y stand for the formula x = y∨x < y and let δ(x, y, z) :=
0 6 z∧((x 6 y∧y 6 x+z)∨(y 6 x∧x 6 y+z)), which says that |x−y| 6 z.
Then continuity in 0 is expressed by
∀z(0 < z → ∃z′(0 < z′ ∧ ∀x(δ(x, 0, z′)→ δ(fx, f0, z))))

Exercise 2 The inductive definition of a negation normal form map may be given as
follows, based on our full FO syntax with →, ↔ for completeness. We simultaneously
define the values for the two functions f(ϕ) = nnf(ϕ) and g(ϕ) = nnf(¬ϕ).

(F1), (F2):
f(ϕ) := ϕ
g(ϕ) := ¬ϕ for atomic ϕ.

(F3):
f(¬ϕ) := g(ϕ)
g(¬ϕ) := f(ϕ).



(F4) ∨ and ∧:
f(ϕ1 ∗ ϕ2) := f(ϕ1) ∗ f(ϕ2)
g(ϕ1 ∗ ϕ2) := g(ϕ1)∗̄g(ϕ2)

for ∗ = ∨,∧ and ∨̄ := ∧, ∧̄ := ∨.

(F4) →:
f(ϕ1 → ϕ2) := g(ϕ1) ∨ f(ϕ2)
g(ϕ1 → ϕ2) := f(ϕ1) ∧ g(ϕ2).

(F4) ↔: f(ϕ1 ↔ ϕ2) = f(ϕ1 ↔ ϕ2) := (f(ϕ1) ∧ f(ϕ2)) ∨ (g(ϕ1) ∧ g(ϕ2)).

(F5)
f(Qxϕ) := Qx f(ϕ)
g(Qxϕ) := Q̄x g(ϕ)

for Q = ∀,∃ and ∀̄ := ∃, ∃̄ := ∀.

The inductive proof of the adequacy of these stipulations is then straightforward.

Exercise 3 The claim is shown by syntactic induction on the formula part ϕ of the
game position. We call a position in which V (R) has a winning strategy a winning
position for V (R). Along with the proof of the claim as stated we may establish that a
position (ϕ, β) is winning for R iff (A, β) 6|= ϕ iff it is not winning for V.

If ϕ is atomic or negated atomic, then the game has already terminated, and R and
V have lost or won (have a trivial winning strategy) in accordance with the claim.

Consider a game position (ϕ, β) with ϕ = (ϕ1 ∨ ϕ2). Then it is V’s move. Thus
(ϕ, β) is winning for V iff at least one of the target positions she can move to is winning
for her, i.e., by the inductive hypothesis, iff (A, β) |= ϕi for at least one of i = 1, 2, hnece
iff (A, β) |= ϕ.

The dual cases (∨-position for R, or ∧-position for V) are treated analogously.
Consider a game position (ϕ, β) with ϕ = ∃xϕ. Then it is V’s move. Thus (ϕ, β) is

winning for V iff at least one of the target positions she can move to is winning for her,
i.e., iff for at least one a ∈ A, (ϕ, β a

x
) is winning for her, iff, by the inductive hypothesis,

(A, β a
x
) |= ϕ for at least one a ∈ A, and hence iff (A, β) |= ϕ.

Again, the dual cases (∃-position for R, or ∀-position for V) are treated analogously.

If formulae are not assumed to be in nnf: in positions (¬ϕ, β), let V and R swap
roles and then proceed from position (ϕ, β).

Formally, one may add a tag ℘ to each position that tells which of the two players, I
or II say, currently acts as the verifier. Then the rules for moves as given just preserve ℘,
while we have a forced move from (¬ϕ, β, I) to (ϕ, β, II) and from (¬ϕ, β, II) to (ϕ, β, I).
Terminating positions are now of the form (ϕ, β, ℘) for atomic ϕ, and ℘ wins iff A, β |= ϕ.

Then player I has a winning strategy in the game starting in (ϕ, β, I) on A iff A, β |=
ϕ.


