Martin Otto

 Stephane Le RouxWinter 2012/13

Solution Hints for Exercises No. 2

Exercise 1 (a) Base case, t is a constant c or a variable x, so the only proper prefix of t is the empty word, which is not a term in T_{σ}. Also note that any term which is neither a constant nor a variable starts with a function symbol, and so does every non-empty prefix of it. Inductive case, assume that $t=f t_{1} \ldots t_{n}$ where t_{1}, \ldots, t_{n} satisfy the property to be proved. Let t^{\prime} be a term s.t. $f t_{1} \ldots t_{n} \sqsubseteq t^{\prime}$ or $t^{\prime} \sqsubseteq f t_{1} \ldots t_{n}$, where $u \sqsubseteq u^{\prime}$ means that u is a prefix of u^{\prime}, and note that t^{\prime} must be of the form $f u_{1} \ldots u_{n}$ for some terms u_{1}, \ldots, u_{n}. Let us prove by induction on $k \in \mathbb{N}$ that if $k \leqslant n$ then for all $i \leqslant k$ we have $u_{i}=t_{i}$. Case $k=0$, trivial. If the property holds for k, then either $n \leqslant k$, in which case it is trivial, or we obtain $u_{k+1} \ldots u_{n}=t_{k+1} \ldots t_{n}$. In the latter case, $u_{k+1} \sqsubseteq t_{k+1}$ or $t_{k+1} \sqsubseteq u_{k+1}$ and we can apply the induction hypothesis.
(b) Let $U_{\sigma}(V)$ be the set defined as follows: the constants of σ are in $U_{\sigma}(V)$, the variables in V are in $U_{\sigma}(V)$, and for all function symbols f of σ and all u_{1}, \ldots, u_{n} in $U_{\sigma}(V)$ where n is the arity of f, the word $f u_{1} \ldots u_{n}$ is also in $U_{\sigma}(V)$. To answer the question it suffices to prove by (syntactic) induction that for all terms t in T_{σ}, the term t is in $T_{\sigma}(V)$ iff it is in $U_{\sigma}(V)$, which requires to refer to the inductive definition of the function var returning the set of variables involved in a term.

Exercise 2 (a) Verify the closure conditions for constant and function symbols.
(b) For instance show by induction on $t \in T_{\sigma}(\emptyset)$ (or for $t \in T_{\sigma}$ with $\operatorname{var}(t)=\emptyset$) that for any homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\text { hom }} \mathfrak{A}$ and any assignment $\beta: \operatorname{Var} \rightarrow A, h$ must coincide with the interpretation function $\mathfrak{I}_{\beta}^{2,}$ on $T_{\sigma}(\emptyset)$.
(c) Similar to part (b), but for any β : $\operatorname{Var} \rightarrow A$ that extends β_{0}.

Exercise 3 Avoiding some (semantically redundant) parentheses, we have that for instance $\mathcal{C}_{i}=\operatorname{Mod}\left(\varphi_{i}\right)$ for

$$
\varphi_{1}:=\forall v_{0} \forall v_{1} \forall v_{2}\left(\begin{array}{l}
\neg R v_{0} v_{0} \\
\wedge\left(R v_{0} v_{1} \vee R v_{1} v_{0} \vee v_{0}=v_{1}\right) \\
\wedge\left(\left(R v_{0} v_{1} \wedge R v_{1} v_{2}\right) \rightarrow R v_{0} v_{2}\right)
\end{array}\right) \wedge \forall v_{0} \exists v_{1} R v_{0} v_{1} .
$$

[this is for linear orderings in the sense of $<$]

$$
\begin{aligned}
\varphi_{2}:= & \forall v_{0} \exists v_{1} R v_{0} v_{1} \\
& \wedge \forall v_{0} \forall v_{1} \forall v_{2}\left(\left(R v_{0} v_{1} \wedge R v_{0} v_{2}\right) \rightarrow v_{1}=v_{2}\right) \\
& \wedge \forall v_{0} \forall v_{1} \forall v_{2}\left(\left(R v_{0} v_{2} \wedge R v_{1} v_{2}\right) \rightarrow v_{0}=v_{1}\right) \\
& \wedge \exists v_{1} \forall v_{0} \neg R v_{0} v_{1} . \\
\varphi_{3}:= & \forall v_{0} \forall v_{1} \forall v_{2}\left(R v_{0} v_{0} \wedge\left(R v_{0} v_{1} \leftrightarrow R v_{1} v_{0}\right) \wedge\left(\left(R v_{0} v_{1} \wedge R v_{1} v_{2}\right) \rightarrow R v_{0} v_{2}\right)\right) \wedge \exists v_{0} \exists v_{1} \neg R v_{0} v_{1} . \\
\varphi_{4}:= & \exists v_{1} \exists v_{2} \exists v_{3}\left(\bigwedge_{1 \leqslant i<j \leqslant 3} \neg v_{i}=v_{j} \wedge \bigwedge_{(i, j) \in R^{21}} R v_{i} v_{j} \wedge \bigwedge_{(i, j) \notin R^{21}} \neg R v_{i} v_{j} \wedge \forall v_{0}\left(\bigvee_{1 \leqslant i \leqslant 3} v_{0}=v_{i}\right)\right) .
\end{aligned}
$$

Exercise 4 Just as in the proof of the isomorphism lemma we find in preparation for the main proof that for all $t \in T_{S}$

$$
\mathfrak{I}_{h \circ \beta}^{\mathfrak{B}}(t)=h\left(\mathfrak{I}_{\beta}^{\mathfrak{P}}(t)\right) .
$$

(Injectivity, surjectivity or strictness of the homomorphism are not required here yet.)
The essential steps in the induction on φ for the main claim:
(F1) $\varphi=t=t^{\prime}: \quad(\mathfrak{A}, \beta) \models t=t^{\prime} \quad \Leftrightarrow \quad \mathfrak{I}_{\beta}^{2 \mathcal{L}}(t)=\mathfrak{I}_{\beta}^{\mathcal{Q}}\left(t^{\prime}\right)$

$$
\Rightarrow \quad h\left(\mathcal{I}_{\beta}^{\mathcal{1}}(t)\right)=h\left(\mathfrak{I}_{\beta}^{\mathcal{1}}\left(t^{\prime}\right)\right)
$$

$$
\Leftrightarrow \mathfrak{I}_{h \circ \beta}^{\mathfrak{B}}(t)=\mathfrak{I}_{h \circ \beta}^{\mathfrak{B}}\left(t^{\prime}\right)
$$

$$
\Leftrightarrow \quad(\mathfrak{B}, h \circ \beta) \models t=t^{\prime} .
$$

(F2) analogous, using that h preserves membership of tuples in R from \mathfrak{A} to \mathfrak{B}.
(F4) for \vee and \wedge : straightforward!
(F5) for $\varphi=\exists x \psi$.
If $(\mathfrak{A}, \beta) \models \varphi$, then $\left(\mathfrak{A}, \beta \frac{a}{x}\right) \models \psi$ for some $a \in A$. It follows (by inductive hypothesis) that $\left(\mathfrak{B}, h \circ\left(\beta \frac{a}{x}\right)\right) \models \psi$, which implies that $\left.\left(\mathfrak{B},(h \circ \beta) \frac{h(a)}{x}\right)\right) \models \psi$, hence $(\mathfrak{B}, h \circ \beta) \models \varphi$.
(F5) for $\varphi=\forall x \psi$.
If $(\mathfrak{A}, \beta) \models \varphi$, then $\left(\mathfrak{A}, \beta \frac{a}{x}\right) \models \psi$ for all $a \in A$. It follows that for all $a \in A$: $\left(\mathfrak{B}, h \circ\left(\beta \frac{a}{x}\right)\right) \models \psi$, which implies that $\left.\left(\mathfrak{B},(h \circ \beta) \frac{h(a)}{x}\right)\right) \models \psi$ for all $a \in A$. As h is surjective (the only place where this is needed), $\left.\left(\mathfrak{B},(h \circ \beta) \frac{b}{x}\right)\right) \models \psi$ for all $b \in B$ and therefore $(\mathfrak{B}, h \circ \beta) \models \varphi$.

Examples precluding stronger versions:
Let $\sigma=\{f, c\}, f$ a unary function symbol. Then $\forall x f x=c$ is true in the oneelement σ-structure $\mathfrak{A}=(\{0\}$, id, 0$)$, but not in $\mathfrak{B}=(\{0,1\}$, id, 0$)$, despite the obvious homomorphism (which fails to be surjective).
W.r.t. the requirement of positivity consider the formula $\neg v_{0}=v_{1}$ (over $\sigma=\emptyset$), and the unique (surjective) homomorphism from $\mathfrak{A}=(\{0,1\})$ to $\mathfrak{B}=(\{0\})$.

Exercise 5 For instance, for $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$. If $x=y$ (same variable symbol) the assertion is trivial, so we assume that x and y are distinct variable symbols. This implies that for any assignment $\beta: \operatorname{Var} \rightarrow A$ and all $a, a^{\prime} \in A,\left(\beta \frac{a}{x}\right) \frac{a^{\prime}}{y}=\left(\beta \frac{a^{\prime}}{y}\right) \frac{a}{x}$. Accordimg to the definition of the semantics of universal quantification (used twice), ($\mathfrak{A}, \beta) \models \forall x \forall y \varphi$ iff for all $a, a^{\prime} \in A\left(\mathfrak{A},\left(\beta \frac{a^{\prime}}{y}\right) \frac{a}{x}\right) \models \varphi$. By the above this is the case iff for all $a^{\prime}, a \in A$ $\left(\mathfrak{A},\left(\beta \frac{a}{x}\right) \frac{a^{\prime}}{y}\right) \models \varphi$ iff $(\mathfrak{A}, \beta) \models \forall y \forall x \varphi$.

