Introduction to Mathematical Logic

MARTIN OTTO STEPHANE LE ROUX Winter 2012/13

Solution Hints for Exercises No.2

- **Exercise 1** (a) Base case, t is a constant c or a variable x, so the only proper prefix of t is the empty word, which is not a term in T_{σ} . Also note that any term which is neither a constant nor a variable starts with a function symbol, and so does every non-empty prefix of it. Inductive case, assume that $t = ft_1 \dots t_n$ where t_1, \dots, t_n satisfy the property to be proved. Let t' be a term s.t. $ft_1 \dots t_n \sqsubseteq t'$ or $t' \sqsubseteq ft_1 \dots t_n$, where $u \sqsubseteq u'$ means that u is a prefix of u', and note that t' must be of the form $fu_1 \dots u_n$ for some terms u_1, \dots, u_n . Let us prove by induction on $k \in \mathbb{N}$ that if $k \leq n$ then for all $i \leq k$ we have $u_i = t_i$. Case k = 0, trivial. If the property holds for k, then either $n \leq k$, in which case it is trivial, or we obtain $u_{k+1} \dots u_n = t_{k+1} \dots t_n$. In the latter case, $u_{k+1} \sqsubseteq t_{k+1}$ or $t_{k+1} \sqsubseteq u_{k+1}$ and we can apply the induction hypothesis.
 - (b) Let $U_{\sigma}(V)$ be the set defined as follows: the constants of σ are in $U_{\sigma}(V)$, the variables in V are in $U_{\sigma}(V)$, and for all function symbols f of σ and all u_1, \ldots, u_n in $U_{\sigma}(V)$ where n is the arity of f, the word $fu_1 \ldots u_n$ is also in $U_{\sigma}(V)$. To answer the question it suffices to prove by (syntactic) induction that for all terms t in T_{σ} , the term t is in $T_{\sigma}(V)$ iff it is in $U_{\sigma}(V)$, which requires to refer to the inductive definition of the function var returning the set of variables involved in a term.

Exercise 2 (a) Verify the closure conditions for constant and function symbols.

- (b) For instance show by induction on $t \in T_{\sigma}(\emptyset)$ (or for $t \in T_{\sigma}$ with $\operatorname{var}(t) = \emptyset$) that for any homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\operatorname{hom}} \mathfrak{A}$ and any assignment $\beta: \operatorname{Var} \to A, h$ must coincide with the interpretation function $\mathfrak{I}_{\beta}^{\mathfrak{A}}$ on $T_{\sigma}(\emptyset)$.
- (c) Similar to part (b), but for any $\beta: \text{Var} \to A$ that extends β_0 .

Exercise 3 Avoiding some (semantically redundant) parentheses, we have that for instance $C_i = Mod(\varphi_i)$ for

$$\varphi_1 := \forall v_0 \forall v_1 \forall v_2 \begin{pmatrix} \neg Rv_0 v_0 \\ \land (Rv_0 v_1 \lor Rv_1 v_0 \lor v_0 = v_1) \\ \land ((Rv_0 v_1 \land Rv_1 v_2) \to Rv_0 v_2) \end{pmatrix} \land \forall v_0 \exists v_1 Rv_0 v_1.$$

[this is for linear orderings in the sense of <]

 $\begin{aligned} \varphi_2 &:= \quad \forall v_0 \exists v_1 R v_0 v_1 \\ & \land \forall v_0 \forall v_1 \forall v_2 \big((R v_0 v_1 \land R v_0 v_2) \to v_1 = v_2 \big) \\ & \land \forall v_0 \forall v_1 \forall v_2 \big((R v_0 v_2 \land R v_1 v_2) \to v_0 = v_1 \big) \\ & \land \exists v_1 \forall v_0 \neg R v_0 v_1. \end{aligned}$

$$\varphi_{3} := \forall v_{0} \forall v_{1} \forall v_{2} \Big(Rv_{0}v_{0} \land \big(Rv_{0}v_{1} \leftrightarrow Rv_{1}v_{0} \big) \land \big((Rv_{0}v_{1} \land Rv_{1}v_{2}) \to Rv_{0}v_{2} \big) \Big) \land \exists v_{0} \exists v_{1} \neg Rv_{0}v_{1}.$$

$$\varphi_{4} := \exists v_{1} \exists v_{2} \exists v_{3} \Big(\bigwedge_{1 \leqslant i < j \leqslant 3} \neg v_{i} = v_{j} \land \bigwedge_{(i,j) \in R^{\mathfrak{A}}} Rv_{i}v_{j} \land \bigwedge_{(i,j) \notin R^{\mathfrak{A}}} \neg Rv_{i}v_{j} \land \forall v_{0} (\bigvee_{1 \leqslant i \leqslant 3} v_{0} = v_{i}) \Big).$$

Exercise 4 Just as in the proof of the isomorphism lemma we find in preparation for the main proof that for all $t \in T_S$

$$\mathfrak{I}^{\mathfrak{B}}_{h\circ\beta}(t) = h\bigl(\mathfrak{I}^{\mathfrak{A}}_{\beta}(t)\bigr).$$

(Injectivity, surjectivity or strictness of the homomorphism are not required here yet.)

The essential steps in the induction on φ for the main claim:

$$\begin{aligned} (\mathrm{F1}) \ \varphi &= t = t': \quad (\mathfrak{A}, \beta) \models t = t' \quad \Leftrightarrow \quad \mathfrak{I}^{\mathfrak{A}}_{\beta}(t) = \mathfrak{I}^{\mathfrak{A}}_{\beta}(t') \\ &\Rightarrow \quad h\big(\mathfrak{I}^{\mathfrak{A}}_{\beta}(t)\big) = h\big(\mathfrak{I}^{\mathfrak{A}}_{\beta}(t')\big) \\ &\Leftrightarrow \quad \mathfrak{I}^{\mathfrak{B}}_{h\circ\beta}(t) = \mathfrak{I}^{\mathfrak{B}}_{h\circ\beta}(t') \\ &\Leftrightarrow \quad (\mathfrak{B}, h\circ\beta) \models t = t'. \end{aligned}$$

(F2) analogous, using that h preserves membership of tuples in R from \mathfrak{A} to \mathfrak{B} .

(F4) for \lor and \land : straightforward!

(F5) for $\varphi = \exists x \psi$.

If $(\mathfrak{A},\beta) \models \varphi$, then $(\mathfrak{A},\beta\frac{a}{x}) \models \psi$ for some $a \in A$. It follows (by inductive hypothesis) that $(\mathfrak{B}, h \circ (\beta\frac{a}{x})) \models \psi$, which implies that $(\mathfrak{B}, (h \circ \beta)\frac{h(a)}{x})) \models \psi$, hence $(\mathfrak{B}, h \circ \beta) \models \varphi$. (F5) for $\varphi = \forall x\psi$.

If $(\mathfrak{A},\beta) \models \varphi$, then $(\mathfrak{A},\beta\frac{a}{x}) \models \psi$ for all $a \in A$. It follows that for all $a \in A$: $(\mathfrak{B},h \circ (\beta\frac{a}{x})) \models \psi$, which implies that $(\mathfrak{B},(h \circ \beta)\frac{h(a)}{x})) \models \psi$ for all $a \in A$. As h is surjective (the only place where this is needed), $(\mathfrak{B},(h \circ \beta)\frac{b}{x})) \models \psi$ for all $b \in B$ and therefore $(\mathfrak{B},h \circ \beta) \models \varphi$.

Examples precluding stronger versions:

Let $\sigma = \{f, c\}$, f a unary function symbol. Then $\forall x f x = c$ is true in the oneelement σ -structure $\mathfrak{A} = (\{0\}, \mathrm{id}, 0)$, but not in $\mathfrak{B} = (\{0, 1\}, \mathrm{id}, 0)$, despite the obvious homomorphism (which fails to be surjective).

W.r.t. the requirement of positivity consider the formula $\neg v_0 = v_1$ (over $\sigma = \emptyset$), and the unique (surjective) homomorphism from $\mathfrak{A} = (\{0,1\})$ to $\mathfrak{B} = (\{0\})$.

Exercise 5 For instance, for $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$. If x = y (same variable symbol) the assertion is trivial, so we assume that x and y are distinct variable symbols. This implies that for any assignment $\beta \colon \text{Var} \to A$ and all $a, a' \in A$, $(\beta \frac{a}{x}) \frac{a'}{y} = (\beta \frac{a'}{y}) \frac{a}{x}$. According to the definition of the semantics of universal quantification (used twice), $(\mathfrak{A}, \beta) \models \forall x \forall y \varphi$ iff for all $a, a' \in A$ $(\mathfrak{A}, (\beta \frac{a'}{y}) \frac{a}{x}) \models \varphi$. By the above this is the case iff for all $a', a \in A$ $(\mathfrak{A}, (\beta \frac{a}{y}) \frac{a'}{y}) \models \varphi$ iff $(\mathfrak{A}, \beta) \models \forall y \forall x \varphi$.