Solution Hints for Exercises No. 13

Exercise 1

(a) Example 1: for countably many unary relations $\left(P_{i}\right)_{i \in \omega}$, let $\mathfrak{A}=\left(\mathrm{P}(\omega),\left(P_{i}\right)_{i \in \omega}^{\mathfrak{A}}\right)$ where $\left(P_{i}\right)^{\mathfrak{d}}=\{s \subseteq \omega: i \in s\}$. Note that for every element $s \in \mathrm{P}(\omega), s=\{i \in$ $\left.\omega: s \in P_{i}^{\mathfrak{A}}\right\}$. Let $\mathfrak{B} \equiv \mathfrak{A}$ be any countable model of $\operatorname{Th}(\mathfrak{A})$ (recall the downward Löwenheim-Skolem theorem). Then there are subsets $s \in \mathrm{P}(\omega)$ for which there is no $b \in B$ such that $\mathfrak{A}, s \equiv_{0} \mathfrak{B}, b$. This implies that not even $\mathfrak{A} \simeq_{1} \mathfrak{B}$.
Example 2: Consider the set \mathbb{Q} of rationals with unary relations $I_{n}:=(-1 / n, 1 / n)$ for $n \geqslant 1$ (nested intervals such that $I_{n} \backslash I_{n+1}$ is infinite). Call this structure \mathfrak{A}, and let \mathfrak{A}° be the restriction of \mathfrak{A} to $\mathbb{Q} \backslash\{0\}$. Then $\mathfrak{A} \not 千_{1} \mathfrak{A}^{\circ}$ as there is no partial isomorphism with $0 \in A$ (this is the unique element that is a member of all I_{n} in \mathfrak{A}, while the intersection of the I_{n} is empty in $\left.\mathfrak{A}^{\circ}\right)$. The reducts of \mathfrak{A} and \mathfrak{A}° to any finite subset of the I_{n} are not only elementarily equivalent, but even isomorphic! It follows that $\mathfrak{A} \equiv \mathfrak{A}^{\circ}$.
(b) Let $\mathfrak{A} \simeq_{\text {fin }} \mathfrak{B}$ and, for instance, \mathfrak{A} finite. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and use the (forth)property in some $\left(I_{k}\right)_{k \in \mathbb{N}}: \mathfrak{A} \simeq_{\text {fin }} \mathfrak{B}$ to obtain b_{1}, \ldots, b_{n} such that $\mathfrak{A}, a_{1}, \ldots, a_{n} \simeq_{1}$ $\mathfrak{B}, b_{1}, \ldots, b_{n}$. It follows that $B=\left\{b_{1}, \ldots, b_{n}\right\}$ and $p:\left(a_{i} \mapsto b_{i}\right)_{1 \leqslant i \leqslant n}$ is an isomorphism. In fact, $\left(I_{k}\right)_{k \leqslant n+1}: \mathfrak{A} \simeq_{n+1} \mathfrak{B}$ suffices for the argument to go through.

Exercise 2

We show that $p: \bar{a} \mapsto \bar{b}$ in $\dot{I}_{\ell+1}$, has forth extensions in \dot{I}_{ℓ} for every $a \in A$. According to the definition of $\dot{I}_{\ell+1}$, the a_{i} and b_{i} respect $d^{\ell+1}$. Let $a \in A$, w.l.o.g. $a \in\left(a_{i}, a_{i+1}\right)^{\mathfrak{2}}$ (the open interval w.r.t. $<^{\mathfrak{A}}$) for some i. We need to find some $b \in\left(b_{i}, b_{i+1}\right)^{\mathfrak{B}}$ such that still $d^{\ell}\left(b_{i}, b\right)=d^{\ell}\left(a_{i}, a\right)$ and $d^{\ell}\left(b, b_{i+1}\right)=d^{\ell}\left(a, a_{i+1}\right)$.

If $d^{\ell+1}\left(b_{i}, b_{i+1}\right)=d^{\ell+1}\left(a_{i}, a_{i+1}\right)$ is finite, then an 'isomorphic copy' of the position of a into $\left(b_{i}, b_{i+1}\right)^{\mathfrak{B}}$ will do.

Otherwise, both intervals have lengths at least $2^{\ell+1}$ and at most one of the distances $d^{\ell}\left(a_{i}, a\right)$ or $d^{\ell}\left(a, a_{i+1}\right)$ can be finite. If neither is finite, find b such that neither $d^{\ell}\left(b_{i}, b\right)$ or $d^{\ell}\left(b, b_{i+1}\right)$ is finite (note that $d^{\ell+1}\left(b_{i}, b_{i+1}\right) \geqslant 2^{\ell+1}$); else copy the finite ℓ-distance exactly, and the other one will automatically be infinite.
(a) Assume $\varphi \in \mathrm{FO}_{0}(<)$ is satisfied precisely by those finite linear ordering whose length is even. For $n:=\operatorname{qr}(\varphi)$ consider the finite discrete linear orderings \mathfrak{A} of length $2^{n}+1$ and \mathfrak{B} of length $2^{n}+2$, respectively. For these, $d^{n}\left(a_{\min }, a_{\max }\right)=$ $d^{n}\left(b_{\text {min }}, b_{\text {max }}\right)=\infty$. Therefore $\mathfrak{A}, a_{\text {min }}, a_{\text {max }} \simeq_{n} \mathfrak{B}, b_{\text {min }}, b_{\text {max }}$, hence $\mathfrak{A} \models \varphi$ iff $\mathfrak{B} \models \varphi$, but only \mathfrak{B} has even length. (The last assertion is even true for $\mathfrak{A} \upharpoonright\left(a_{\min }, a_{\max }\right)^{\mathfrak{d}}$ vs. $\mathfrak{B} \upharpoonright\left(b_{\min }, b_{\max }\right)^{\mathfrak{B}}$, which have lengths $2^{n}-1$ and 2^{n}.)
(b) Let $\mathfrak{A}=(\mathbb{N},<)$ and $\mathfrak{B}="(\mathbb{N},<)+(\mathbb{Z},<)^{\prime \prime}$. Note that both orderings are discrete, both with first and without last element. In order to show that $\mathfrak{A} \simeq_{m} \mathfrak{B}$, though, it suffices to show the following. \mathfrak{A} and \mathfrak{B} can each be presented as the ordered sum of an initial segment and a final segment, $\mathfrak{A}=\mathfrak{A}^{(0)}+\mathfrak{A}^{(1)}$ and $\mathfrak{B}=\mathfrak{B}^{(0)}+\mathfrak{B}^{(1)}$ in such a manner that $\mathfrak{A}^{(i)} \simeq_{m} \mathfrak{B}^{(i)} i$ for $i=0,1$: back-and-forth systems $\left(I_{k}^{(0)}\right)_{k \leqslant m}$ and
$\left(I_{k}^{(1)}\right)_{k \leqslant m}$ for the individual \simeq_{m}-relationships can be combined to form a back-andforth system $\left(I_{k}\right)_{k \leqslant m}$ for $\mathfrak{A} \simeq_{m} \mathfrak{B}$, where I_{k} consists of all disjoint combinations of $p^{(0)} \in I_{k}^{(0)}$ and $p^{(1)} \in I_{k}^{(1)}$.
For a given m, let $\mathfrak{A}^{(0)}$ be an initial segment of \mathfrak{A} of length greater than $2^{m}, \mathfrak{A}^{(1)}$ the rest of \mathfrak{A} (which is isomorphic to $(\mathbb{N},<)$); similarly let $\mathfrak{B}^{(1)}$ a final segment of \mathfrak{B} that is isomorphic to $(\mathbb{N},<)$, and $\mathfrak{B}^{(0)}$ the remaining initial segment (which is isomorphic to $(\mathbb{N},<)$ with a reverse copy of $(\mathbb{N},<)$ appended on the right). Then the final segments $\mathfrak{A}^{(1)}$ and $\mathfrak{B}^{(1)}$ are isomorphic (hence trivially \simeq_{m} equivalent), and the initial segments $\mathfrak{A}^{(0)}$ and $\mathfrak{B}^{(0)}$ are \simeq_{m} equivalent (as discrete linear orderings with first and last elements) by the main part of this exercise (note that both are "infinitely long" in the sense of d^{m}).

Exercise 3 Clearly the set I of all finite monotone maps between two dense linear orderings without endpoints is a back-and-forth system. For countable $\mathfrak{A}=\left(A,<^{\mathfrak{A}}\right)$ and $\mathfrak{A}=\left(B,<{ }^{\mathfrak{B}}\right)$, enumerate A as $\left(a_{i}\right)_{i \in \mathbb{N}}$ and B as $\left(b_{i}\right)_{i \in \mathbb{N}}$, and use the fact that $I: \mathfrak{A} \simeq_{\text {part }} \mathfrak{B}$ to find an increasing sequence of finite mononotone maps $p \in \operatorname{Part}(\mathfrak{A}, \mathfrak{B})\left(p_{n}\right)_{n \in \mathbb{N}}$ such that $a_{n} \in \operatorname{dom}\left(p_{n}\right)$ and $b_{n} \in \operatorname{image}\left(p_{n}\right)$. Then $f:=\bigcup_{n} p_{n}$ is well-defined, monotone and a bijection; hence an isomorphism.

