Solution Hints for Exercises No.13

Exercise 1

- (a) Example 1: for countably many unary relations (P_i)_{i∈ω}, let 𝔅 = (P(ω), (P_i)^𝔅_{i∈ω}) where (P_i)^𝔅 = {s ⊆ ω: i ∈ s}. Note that for every element s ∈ P(ω), s = {i ∈ ω: s ∈ P^𝔅_i}. Let 𝔅 ≡ 𝔅 be any countable model of Th(𝔅) (recall the downward Löwenheim–Skolem theorem). Then there are subsets s ∈ P(ω) for which there is no b ∈ B such that 𝔅, s ≡₀ 𝔅, b. This implies that not even 𝔅 ≃₁ 𝔅. Example 2: Consider the set 𝔅 of rationals with unary relations I_n := (-1/n, 1/n) for n ≥ 1 (nested intervals such that I_n \ I_{n+1} is infinite). Call this structure 𝔅, and let 𝔅 be the restriction of 𝔅 to 𝔅 \ {0}. Then 𝔅 a sthere is no partial isomorphism with 0 ∈ A (this is the unique element that is a member of all I_n in 𝔅, while the intersection of the I_n is empty in 𝔅). The reducts of 𝔅 and 𝔅 to any finite subset of the I_n are not only elementarily equivalent, but even isomorphic! It follows that 𝔅 ≡ 𝔅.
- (b) Let $\mathfrak{A} \simeq_{\text{fn}} \mathfrak{B}$ and, for instance, \mathfrak{A} finite. Let $A = \{a_1, \ldots, a_n\}$ and use the (forth)property in some $(I_k)_{k \in \mathbb{N}} \colon \mathfrak{A} \simeq_{\text{fn}} \mathfrak{B}$ to obtain b_1, \ldots, b_n such that $\mathfrak{A}, a_1, \ldots, a_n \simeq_1$ $\mathfrak{B}, b_1, \ldots, b_n$. It follows that $B = \{b_1, \ldots, b_n\}$ and $p \colon (a_i \mapsto b_i)_{1 \leq i \leq n}$ is an isomorphism. In fact, $(I_k)_{k \leq n+1} \colon \mathfrak{A} \simeq_{n+1} \mathfrak{B}$ suffices for the argument to go through.

Exercise 2

We show that $p: \bar{a} \mapsto \bar{b}$ in $\dot{I}_{\ell+1}$, has forth extensions in \dot{I}_{ℓ} for every $a \in A$. According to the definition of $\dot{I}_{\ell+1}$, the a_i and b_i respect $d^{\ell+1}$. Let $a \in A$, w.l.o.g. $a \in (a_i, a_{i+1})^{\mathfrak{A}}$ (the open interval w.r.t. $<^{\mathfrak{A}}$) for some i. We need to find some $b \in (b_i, b_{i+1})^{\mathfrak{B}}$ such that still $d^{\ell}(b_i, b) = d^{\ell}(a_i, a)$ and $d^{\ell}(b, b_{i+1}) = d^{\ell}(a, a_{i+1})$.

If $d^{\ell+1}(b_i, b_{i+1}) = d^{\ell+1}(a_i, a_{i+1})$ is finite, then an 'isomorphic copy' of the position of a into $(b_i, b_{i+1})^{\mathfrak{B}}$ will do.

Otherwise, both intervals have lengths at least $2^{\ell+1}$ and at most one of the distances $d^{\ell}(a_i, a)$ or $d^{\ell}(a, a_{i+1})$ can be finite. If neither is finite, find b such that neither $d^{\ell}(b_i, b)$ or $d^{\ell}(b, b_{i+1})$ is finite (note that $d^{\ell+1}(b_i, b_{i+1}) \ge 2^{\ell+1}$); else copy the finite ℓ -distance exactly, and the other one will automatically be infinite.

- (a) Assume $\varphi \in FO_0(<)$ is satisfied precisely by those finite linear ordering whose length is even. For $n := qr(\varphi)$ consider the finite discrete linear orderings \mathfrak{A} of length $2^n + 1$ and \mathfrak{B} of length $2^n + 2$, respectively. For these, $d^n(a_{\min}, a_{\max}) =$ $d^n(b_{\min}, b_{\max}) = \infty$. Therefore $\mathfrak{A}, a_{\min}, a_{\max} \simeq_n \mathfrak{B}, b_{\min}, b_{\max}$, hence $\mathfrak{A} \models \varphi$ iff $\mathfrak{B} \models \varphi$, but only \mathfrak{B} has even length. (The last assertion is even true for $\mathfrak{A} \upharpoonright (a_{\min}, a_{\max})^{\mathfrak{A}}$ vs. $\mathfrak{B} \upharpoonright (b_{\min}, b_{\max})^{\mathfrak{B}}$, which have lengths $2^n - 1$ and 2^n .)
- (b) Let $\mathfrak{A} = (\mathbb{N}, <)$ and $\mathfrak{B} = "(\mathbb{N}, <) + (\mathbb{Z}, <)"$. Note that both orderings are discrete, both with first and without last element. In order to show that $\mathfrak{A} \simeq_m \mathfrak{B}$, though, it suffices to show the following. \mathfrak{A} and \mathfrak{B} can each be presented as the ordered sum of an initial segment and a final segment, $\mathfrak{A} = \mathfrak{A}^{(0)} + \mathfrak{A}^{(1)}$ and $\mathfrak{B} = \mathfrak{B}^{(0)} + \mathfrak{B}^{(1)}$ in such a manner that $\mathfrak{A}^{(i)} \simeq_m \mathfrak{B}^{(i)} i$ for i = 0, 1: back-and-forth systems $(I_k^{(0)})_{k \leq m}$ and

 $(I_k^{(1)})_{k \leq m}$ for the individual \simeq_m -relationships can be combined to form a back-andforth system $(I_k)_{k \leq m}$ for $\mathfrak{A} \simeq_m \mathfrak{B}$, where I_k consists of all disjoint combinations of $p^{(0)} \in I_k^{(0)}$ and $p^{(1)} \in I_k^{(1)}$.

For a given m, let $\mathfrak{A}^{(0)}$ be an initial segment of \mathfrak{A} of length greater than 2^m , $\mathfrak{A}^{(1)}$ the rest of \mathfrak{A} (which is isomorphic to $(\mathbb{N}, <)$); similarly let $\mathfrak{B}^{(1)}$ a final segment of \mathfrak{B} that is isomorphic to $(\mathbb{N}, <)$, and $\mathfrak{B}^{(0)}$ the remaining initial segment (which is isomorphic to $(\mathbb{N}, <)$, with a reverse copy of $(\mathbb{N}, <)$ appended on the right). Then the final segments $\mathfrak{A}^{(1)}$ and $\mathfrak{B}^{(1)}$ are isomorphic (hence trivially \simeq_m equivalent), and the initial segments $\mathfrak{A}^{(0)}$ and $\mathfrak{B}^{(0)}$ are \simeq_m equivalent (as discrete linear orderings with first and last elements) by the main part of this exercise (note that both are "infinitely long" in the sense of d^m).

Exercise 3 Clearly the set I of all finite monotone maps between two dense linear orderings without endpoints is a back-and-forth system. For countable $\mathfrak{A} = (A, <^{\mathfrak{A}})$ and $\mathfrak{A} = (B, <^{\mathfrak{B}})$, enumerate A as $(a_i)_{i \in \mathbb{N}}$ and B as $(b_i)_{i \in \mathbb{N}}$, and use the fact that $I : \mathfrak{A} \simeq_{part} \mathfrak{B}$ to find an increasing sequence of finite mononotone maps $p \in Part(\mathfrak{A}, \mathfrak{B})$ $(p_n)_{n \in \mathbb{N}}$ such that $a_n \in \operatorname{dom}(p_n)$ and $b_n \in \operatorname{image}(p_n)$. Then $f := \bigcup_n p_n$ is well-defined, monotone and a bijection; hence an isomorphism.